
Statistical mechanics of directed models of polymers in the square lattice

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys. A: Math. Gen. 36 R11

(http://iopscience.iop.org/0305-4470/36/15/201)

Download details:

IP Address: 171.66.16.96

The article was downloaded on 02/06/2010 at 11:35

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/36/15
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 36 (2003) R11–R61 PII: S0305-4470(03)52469-6

TOPICAL REVIEW

Statistical mechanics of directed models of polymers in
the square lattice

E J Janse van Rensburg

Department of Mathematics and Statistics, York University, Toronto, Ontario, Canada M3J 1P3

E-mail: rensburg@yorku.ca

Received 2 January 2003
Published 3 April 2003
Online at stacks.iop.org/JPhysA/36/R11

Abstract
Directed square lattice models of polymers and vesicles have received
considerable attention in the recent mathematical and physical sciences
literature. These are idealized geometric directed lattice models introduced
to study phase behaviour in polymers, and include Dyck paths, partially
directed paths, directed trees and directed vesicles models. Directed models
are closely related to models studied in the combinatorics literature (and are
often exactly solvable). They are also simplified versions of a number of
statistical mechanics models, including the self-avoiding walk, lattice animals
and lattice vesicles. The exchange of approaches and ideas between statistical
mechanics and combinatorics have considerably advanced the description and
understanding of directed lattice models,and this will be explored in this review.

The combinatorial nature of directed lattice path models makes a study
using generating function approaches most natural. In contrast, the statistical
mechanics approach would introduce partition functions and free energies,
and then investigate these using the general framework of critical phenomena.
Generating function and statistical mechanics approaches are closely related.
For example, questions regarding the limiting free energy may be approached
by considering the radius of convergence of a generating function, and the
scaling properties of thermodynamic quantities are related to the asymptotic
properties of the generating function.

In this review the methods for obtaining generating functions and
determining free energies in directed lattice path models of linear polymers
is presented. These methods include decomposition methods leading to
functional recursions, as well as the Temperley method (that is implemented
by creating a combinatorial object, one slice at a time). A constant term
formulation of the generating function will also be reviewed.

The thermodynamic features and critical behaviour in models of directed
paths may be informative about the underlying properties that determine phase
diagrams for wider classes of models, including physical models of polymers.
Of particular interest are adsorption and collapse transitions in models of
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polymers and copolymers. The properties of thermodynamic quantities in
those models are described by tricritical scaling. This is reviewed for directed
path models, and the generating function approaches can be used to apply
tricritical scaling to models of adsorbing, inflating and collapsing directed
lattice paths. Critical exponents for a variety of models can be obtained in this
manner, and with it a better understanding, and a classification, of the models.

PACS numbers: 05.50.+q, 02.10.Ab, 05.40.Fb, 82.35.−x

1. Introduction

Directed lattice models of linear and branch polymers have been introduced as exactly
solvable models that exhibit critical phase behaviour which is descriptive of thermodynamic
behaviour seen in polymers. This phase behaviour is usually defined by considering metric and
thermodynamic quantities of physical systems. Physical descriptions of the critical behaviour
also include assumptions of universality; that certain scaling laws and relations are obeyed
by a variety of physical and model systems, and that (in particular) the same set of critical
exponents will determine transitions in a variety of different models [14, 16, 23, 24]. Most
notably, model systems that idealizes a physical system may exhibit the same set of critical
exponents as the physical system, and so belong to the same class. This would provide insight
into the properties that determine phase behaviour.

The most important feature in models of polymers are the conformational degrees of
freedom. These degrees of freedom makes a large (and sometimes dominant) contribution to
the free energy via entropic terms. Thermodynamic properties of the model will generally
be dependent on the relationship between conformational entropy and forces involving the
polymer. Lattice models of polymers (paths in the lattice) effectively models the entropic part
of the free energy, and by introducing interactions involving the path, an interacting model
of a polymer is defined that may describe the phase behaviour encountered in real physical
systems.

In this review the concern will be primarily on the combinatorial properties of directed
square lattice path models of polymers. Such directed paths are models of linear polymers
and are usually described by differential equations or by functional recursions that involve
the generating function. Techniques for solving such relations will be reviewed for a directed
path model of a linear polymer. Dyck paths are models of adsorbing linear polymers, and
although this is one of the simplest directed path models, it still exhibits a rich phase diagram
that appears to describe some of the thermodynamic properties of polymers.

Generally, the phase diagram of an interacting polymer would include a tricritical
point, and the theory of tricritical scaling provides a framework for the description of the
thermodynamics of directed lattice models of interacting polymers. Of particular interest in
the recent literature are the phenomena of polymer adsorption and polymer collapse [14, 15,
19, 59]. These phenomena are driven by an interaction in combination with the conformational
entropy of the polymer, and phase behaviour can be observed in the (statistical) geometric
properties of the polymer, such as its mean size [59]. In practice, the effects of phase behaviour
have also been noted in the physical behaviour of paints, coatings, adsorption of biologically
important polymers and so on, and in these circumstances may be of considerable economic
importance. Polymer collapse and adsorption have received attention from chemists (see for
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example [32, 59]), and lattice models are motivated to give some generic insights into the
theoretical issues encountered in the description of collapse and adsorption.

The most basic directed model of a polymer is a (directed) lattice path: The path starts
at the origin and it steps north or east for n steps before terminating in a final vertex. It is
composed of edges (steps) and vertices (sites), and is a very simple model of a linear polymer
with bonds (steps) between monomers (vertices). The conformational entropy of the polymer
is modeled by the large number of conformations that path may assume. These models have
received considerable attention in physics [8, 9, 34, 55] and mathematics literature [27, 60].

A model of lattice paths with thermodynamic content can be created by the introduction
of an energy in the model. For example, the energy of a lattice path of length n can be
defined as the number of times a certain arrangements of edges (steps or bonds) occur in the
path. Examples may include paths with energy defined as the number of vertical edges, or the
number of right turns in the path. A good introduction and review of statistical mechanics and
thermodynamics in lattice models of polymers is the book by Vanderzande [62].

The most important quantity in directed path models of polymers is hn(m); the number of
paths of length n steps from the origin with energy equal to m. Determining hn(m) is a purely
combinatorial problem, and at this level there is little (if any) physics in the analysis of these
types of problems.

Statistical mechanics enters the model by the definition of a partition function that
ultimately give rise to thermodynamic functions such as the energy density and the specific
heat. These quantities usually obey certain scaling laws close to critical points, exhibit through
scaling exponents whose universal character connects the combinatorial models to physical
phenomena. The partition function is defined by

Zn(z) =
∑
m

hn(m)z
m (1)

where z is a generating variable and is said to be conjugate to the energy m; it is also called
an activity, and if z = eβ , then β is a fugacity (sometimes treated as proportional to the inverse
of the temperature T: β ∝ 1/T ).

The thermodynamic nature of the lattice path can be determined by first defining a free
energy Fn: The standard definition is

Fn(z) = logZn(z) (2)

and the first derivative of Fn(z) to log z is the total energy while the second derivative to log z
is the heat capacity. Critical behaviour is signalled by a non-analyticity in these quantities;
however, since Zn(z) is a polynomial, Fn(z) is analytic for z > 0 and so there cannot be
critical phase behaviour in a model of finite size.

Phase behaviour becomes interesting in the limiting model, as the length of the path
approaches infinity. In physical models this is approximated by large polymers, so that the
infinite length path serves as a model for large linear polymers. Since Fn(z) approaches
infinity with n, a limiting free energy density is defined by

F(z) = lim
n→∞

1

n
logZn(z). (3)

Existence of this limit is not guaranteed, but is nevertheless essential for well defined models.
In the models discussed in this review, it can be shown to exist in every case. It can also be
shown that F(z) is a convex function of log z (see section 3).

Since the limiting free energy is a density (per unit length), the first derivative of F(z) to
log z is called the energy density while the second derivative to log z is the specific heat:

E(z) = dF(z)
d log z

C(z) = d2F(z)
d(log z)2

. (4)
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The convexity properties of F(z) guarantees the existence of these limits for almost every z,
as n → ∞; these are (Lebesgue) measurable functions and E(z) is a non-decreasing function
that is differentiable almost everywhere.

Phase transitions are classified by the continuity properties of E(z). A first-order transition
occurs when there is a (jump) discontinuity in E(z) at a critical activity z = zc. If E(z) is
continuous, but F(z) is non-analytic at z = zc, then the model has a continuous transition.
In most models of this kind a continuous transition is signalled by a cusp or by a divergence
at z = zc in the specific heat C(z). The shape of the divergence is determined by a scaling
exponent α called the specific heat exponent. Traditionally (and imprecisely) this is expressed
via the ansatz that

C(z) ∼ (z− zc)
−α as z → z+

c . (5)

The precise meaning of ‘∼’ in the above is somewhat unclear, but it is usually taken to mean
that C(z) is to leading order proportional to (z − zc)

−α . In the event that z → z−c , then the
scaling assumption may be C(z) ∼ (zc − z)−α

′
, where α′ could be numerically different from

α; in some cases α′ may not be defined.
The assumption in equation (5) implies that the limiting free energy should be scaling

with z as

F(z) ∼ (z − zc)
2−α as z → z+

c . (6)

It could be the case that α assumes the same value for a number of different models; in that
case the models may potentially belong to the same universality class: these classes would
share the same set of critical exponents.

The thermodynamic nature of the model is explicitly connected to the combinatorial
properties by the generating function

G(t, z) =
∑
n�0

Zn(z)t
n =

∑
n�0

∑
m�0

hn(m)z
mtn (7)

where t is the activity (generating variable) conjugate to the length of the path1. The radius
of convergence or critical curve tc(z) of G(t, z) is related to the limiting free energy per unit
length by

F(z) = − log tc(z) (8)

and this may be observed from equation (7). One may also interpret logG(t, z) as the grand
potential of the model. It is more often than not convenient to examine G(t, z) and tc(z)
directly, rather than F(z), in order to determine the phase behaviour and thermodynamic
properties of the model [10]. More comments can be found in references [11, 35].

2. Directed paths in the square lattice

Directed lattice paths are often used as discrete models of polymers [13, 62]. These
paths are often considered in the vicinity of a solid line in a model of polymer adsorption
[6, 25, 44, 55, 56] and this model will be considered in section 2.2. In section 2.1 a simple
model of a directed path that exhibits phase behaviour is introduced.

Let the number of directed square lattice paths with length (number of steps) n be an.
Then an = 2n, since each step is either in the E or the N directions. If t generates steps
1 The generating variable t will be conjugate to path length. If t → √

s, then s will be conjugate to the half-length
of the path. The activity q will be conjugate to areas enclosed by paths, and z will be an activity that is generically
conjugate to an energy.
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Figure 1. Two models of directed paths. On the left is a directed path consisting of choice edges
followed by a sequence of edges fixed horizontally. Choice edges are weighted by a factor of z
each. On the right is a Dyck path interacting with the main diagonal. Visits of the path to the main
diagonal are denoted by ◦, and each are weighted by a factor of z in the generating function.

(and thus the length of the paths), then the generating function is (1 − 2t)−1; it has radius of
convergence tc = 1/2 and a simple pole singularity at this point.

This model can be changed into a simple lattice model of a polymer with a bending
energy. Let an(m) be the number of directed paths with n steps and exactly m right angles
between successive steps (that is, vertices where an N steps follows an E step, or vice versa).
Then an(m) = 2

(
n−1
m

)
if n � 1 (but note that a0(0) = 1), and the extra factor of 2 accounts

for the two possible choices for the first step in the walk. If s is the activity conjugate to the
energy (the number of right angles), then the full generating function is

g0(t, z) = 1 +
∑
n�1

[
n−1∑
m=0

an(m)z
m

]
tn = 1 +

2

(1 + z)(1 − t (1 + z))
. (9)

There is a simple pole in this model at tc(z) = 1/(1 + z), so that the limiting free energy can
be determined immediately:

F(z) = log(1 + z). (10)

This free energy is analytic for all z > 0, so that there is no critical behaviour, and it is not
interesting from a thermodynamic point of view. It is not difficult to construct models of
directed paths with interesting phase behaviour.

2.1. A directed path with fixed edges

Consider a directed path of length n with the property that the first m edges could be oriented
either E or N (and are called choice edges), and the remaining n−m edges are all constrained
to point E (see figure 1) [35]. The number of such paths is an(m) = 2m, and the generating
function is

g(t, z) = 1

(1 − t)(1 − 2tz)
. (11)

The critical curve tc(z) is directly seen from g(t, z) to be given by

tc(z) =
{

1 if z � 1
2

1
2z if z > 1

2

(12)
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Figure 2. Graphs of the critical curve tc(z) of the generating function g(t, z) for a directed path
with choice edges, and the limiting free energy F(z) of this model, as discussed in section 2.1.
The critical point zc = 1/2 is found at a non-analyticity in F(z). The discontinuity in the first
derivative of F(z) to log z indicates that this is a first-order phase transition. If z > zc, then the
density of choice edges is equal to one (as seen from equation (14)), while this density is zero
if z < zc.

The limiting free energy is obtained by calculating log tc(z), and is given by (see figure 2)

F(z) =
{

0 if z � 1
2

log 2 + log z if z > 1
2 .

(13)

The first derivative of the limiting free energy to log z is the energy density, and this is given
by

E(z) =
{

0 if z < 1
2

1 if z > 1
2

(14)

so that this model has a first-order transition at zc = 1/2. It is possible to determine the critical
exponent α in equation (6). Observe that if z > 1/2, then one may expand F(z):

F(z) = log
(
1 +
(
z− 1

2

)/
1
2

)
= 2
(
z − 1

2

)
+
(
2
(
z − 1

2

))2
+O

((
2
(
z− 1

2

))3)
. (15)

Comparison with equation (6) shows that 2 − α = 1, or that α = 1, by considering the
leading order term in F(z); this value if consistent with a first-order transition in this model.
If t < tc(z), then the generating function in this model is finite, and its value is determined by
contributions by paths of finite length. Hence, the phase determined by t < tc(z) is the finite
phase in this model. Conversely, if t > tc(z), then g(t, z) is infinite due to the contributions
of paths of arbitrary length2; this phase is the infinite phase, as marked in figure 2. These two
phases are separated by the critical curve t = tc(z), and at the critical point z = zc = 1/2
there is a non-analyticity in tc(z) that corresponds to the first-order phase transition as observed
from the limiting free energy in equation (13).

The entire critical curve tc(z) in this model is the locus of simple poles in g(t, z),
except when z = zc = 1/2, where a second-order pole is encountered. The shape
of the critical curve is determined by equation (12), and by expanding the critical point,
1 − tc(z) = 2(z − 1/2) + O((z − 1/2)2), so that 1 − tc(z) increases linearly with z. This is
the shape of the critical curve, and it will play a role in describing the critical properties of the
model.

2 It is in principle still possible to fix t and z in this regime and then consider a model of the path confined to a finite
maximum volume (or of finite maximum length). Taking the maximum to infinity with appropriate normalization
may then define a thermodynamic limit. The existence of this limit is a separate question that will not be discussed
in this review.
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2.2. Dyck paths adsorbing in the main diagonal

A Dyck path is a directed path from the origin in the square lattice, constrained so that its first
and last vertices are in the main diagonal. Otherwise it steps only on vertices in the half-space
y � x above or on the main diagonal [26, 27, 34, 60]. An example of a Dyck path is illustrated
in figure 1.

A two-dimensional directed model of polymer adsorption can be constructed by adding an
interaction between a Dyck path and the main diagonal [34], see also [6, 13, 25, 35, 55]. The
generating function of this model can be found by determining and then solving a functional
recursion that the generating function must satisfy.

An excursion is a Dyck path that has no vertices, except its terminal (first and last)
vertices, in the main diagonal. It is the case that Dyck paths of length 2n are in one-to-one
correspondence with excursions of length 2n + 2. To see this, note that a Dyck path can be
turned into an excursion by translating it one step in the y-direction, and then adding two
new edges to reconnect the endpoints to the main diagonal. This construction is uniquely
reversible, and it establishes a bijection between Dyck paths and excursions.

The number of Dyck paths of length n steps is denoted by Cn. An explicit expression for
Cn can be obtained as follows: Consider a staircase walk ω from the origin (0, 0) to the point
(n, n), and suppose that it has l left turns. The x-coordinates of these left turns can be chosen
in
(
n

l

)
ways, and the y-coordinates can similarly be chosen in

(
n

l

)
ways. Thus, the coordinates

of the l left turns can be chosen in
(
n

l

)2
ways altogether.

On the other hand,ωwould not be a Dyck path if it visits vertices below the main diagonal.
Hence, paths that visit vertices below the main diagonal must be subtracted from

(
n

l

)2
so that

only Dyck paths remain. Suppose that ν is a directed path and that it visits a last vertex v
in the subdiagonal y = x − 1. A reflection of that segment of ν from v to (n, n) through
the subdiagonal gives a directed path ending in the vertex with coordinate (n + 1, n− 1). On
the other hand, a directed path ν ′ that ends in (n + 1, n − 1) must visit a last vertex v′ in the
subdiagonal, and so the segment from v′ to (n + 1, n− 1) can be reflected to give a staircase
path ending in (n, n) that visits at least one vertex below the diagonal. This establishes a
one-to-one correspondence between staircase paths from the origin to (n+ 1, n−1), and Dyck
paths from the origin to (n, n) that visits at least one vertex below the main diagonal.

The number of staircase walks ending in (n + 1, n− 1) with l left turns is
(
n+1
l

)(
n−1
l

)
; to

see this one uses an argument similar to the previous by selecting first an x-coordinate, and
then a y-coordinate, for all the left turns in the path. Thus, the number of Dyck paths of length
2n (or of half-length n) is given by

Cn =
n∑
l=0

(
n

l

)(
n

l

)
−

n−1∑
l=0

(
n + 1
l

)(
n− 1
l

)
= 1

n + 1

(
2n
n

)
. (16)

Cn is also known as Catalan’s number; there are many sequences of objects known to be
enumerated by Cn, for example, there are connections to the gambler’s ruin problem [21].

The generating function of Dyck paths, with t conjugate to length, can now be determined:

C(t) =
∞∑
n=0

Cnt
2n. (17)

An explicit closed form expression for C(t) can be obtained by using excursions and by
classifying Dyck paths as either being a single vertex at the origin (the trivial path), or as
consisting of an excursion followed by a Dyck path that may be trivial.

Excursions of length 2n + 2 are in one-to-one correspondence with Dyck paths of length
2n, so it follows that excursions are generated by t2C(t). Any Dyck path is either a single
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Figure 3. A Dyck path in the square lattice. The horizontal axis is the main diagonal, and the
vertical axis the anti-diagonal. Vertices in the main diagonal, marked by •, are visits. A Dyck
path with no visits, except its first and last vertices, is an excursion. Dyck paths are in one-to-one
correspondence with excursions: to see this, note that every Dyck path can be turned into an
excursion by adding one edge at each of its endpoints, and then translating it one step away from
the main diagonal. This is uniquely reversible. Dyck paths may be decomposed into an excursion,
followed by an arbitrary Dyck path (that may be a single visit) by cutting it into two parts on its
first return v to the main diagonal.

vertex, or starts with an excursion and after its first return to the main diagonal may either
terminate, or continue as an arbitrary Dyck path. Thus

C(t) = 1 + [t2C(t)]C(t). (18)

Solving for C(t) from equation (18) shows that

C(t) = 2

1 +
√

1 − 4t2
= 1 − √

1 − 4t2

2t2
(19)

and note that C(t) has radius of convergence tc = 1/2 given by the square root branch point.
A Dyck path is adsorbing if its visits to the main diagonal are generated by an activity z.

Let the generating function of adsorbing Dyck paths be C(t, z), and note that each adsorbing
Dyck path is either a single visit at the origin, or is composed of an excursion up to its first
return to the main diagonal (see figure 3), followed by an arbitrary adsorbing Dyck path. In
other words

C(t, z) = z + z[t2C(t)]C(t, z) (20)

where C(t) ≡ C(t, 1) and is given by equation (19). If z = 1 in this recurrence, then C(t, 1)
can be found. Subsequently, one may solve for C(t, z),

C(t, z) = 2z

2 − z(1 − √
1 − 4t2)

. (21)

The generating function C(t, z) satisfies an exchange relation [57]:

zC(t, z)(C(t, 1)− 1) = C(t, 1)(C(t, z)− z) (22)

that is invariant under the exchange 1 ↔ z. This can be checked by direct substitution of
C(t, z), but more insight is gained by proving it explicitly.

Consider a non-trivial Dyck path, and suppose that the visits to the main diagonal are
weighted from the origin by z, but that this process is incomplete—there is a last weighted
visit v, and every visit preceding v is weighted by z, while every visit after v is weighted
by 1. Suppose also that v is not the final vertex in the path. Such partially weighted paths are
generated by C(t, z) (C(t, 1)− 1), since the weighted part of the path is generated byC(t, z),
and may consist of a single vertex. The part of the path following v may not be a trivial path
(since v is not the final vertex in the path), and so it is generated by (C(t, 1)− 1).

Consider now, instead, the case that the first visit w following v is provided with a factor
of z. w may be the final vertex in the path, and the weighed part of the path contains at least
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the two visits v and w. The resulting path consists of a first weighted part ending in w (and
it may not be trivial) generated by (C(t, z)− z), followed by an unweighted path following
w (that may be trivial) and is generated by C(t, 1). Since the only additional factor was z
appended to w, this shows that C(t, z) (C(t, 1)− 1) and C(t, 1) (C(t, z)− z) differs only by
one factor of z. This proves equation (22). One may solve for C(t, z) from equation (22) to
obtain

C(t, z) = zC(t, 1)

z + (1 − z)C(t, 1)
. (23)

A solution for C(t, 1) cannot be obtained from this relation, and so it is not possible to solve
for C(t, z). In other words, this relation is essentially different from equation (20). It will be
useful in finding generating functions for a model of adsorbing and coloured Dyck paths in
section 2.6.3.

The critical curve tc(z) of C(t, z) may be computed from equation (21). Direct
computation gives

tc(z) =
{ 1

2 if z � 2
√
z−1
z

if z > 2
(24)

and so the limiting free energy in this model is

F(z) =
{

log 2 if z � 2

log z− 1
2 log(z− 1) if z > 2.

(25)

In other words, the adsorption transition is at zc = 2. Note that the energy is given by

E(z) =
{

0 if z � 2
z−2
2z−2 if z > 2.

(26)

There is a cusp singularity in the specific heat

C(z) =
{

0 if z � 2
z

2(z−1)2 if z > 2.
(27)

A schematic plot of tc(z) and F(z) against log z will again appear as in figure 2, although now
F(z) is not linear in log z for z > zc. Expanding F(z) about zc = 2,

F(z) = log 2 + 1
8 (z − 2)2 − 1

8 (z− 2)3 +O((z− 2)4) for z → z+
c (28)

and comparing it with equation (6) shows that the specific heat exponent is 2 − α = 2, or that
α = 0. The energy E(z) is continuous at z = zc, so this model has a continuous transition, as
opposed to the first-order transition in the model with choice edges. Note that E(z) increases
from zero continuously with increasing z, and that asymptotically every second vertex in the
path becomes a visit, as one sees from equation (26).

2.3. A directed path adsorbing in the main diagonal (or a defect plane)

The generating functionC(t) for Dyck paths can be used to determine the generating function
of directed paths interacting with a (penetrable) main diagonal (called a defect plane). In
figure 4 a directed path starts at the origin, and returns to the main diagonal a first time at v,
and a last time at w, before it wanders off in the lattice in the space either above the defect
plane.

The last segment of the path, following the last visit w, is its tail, and it may be empty if
the last vertex in the path is also its last visitw. Suppose thatD(t, z) is the generating function
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Figure 4. A directed path from the origin with the main diagonal oriented horizontally. This path
returns to the main diagonal first time at v, and a last time at w. It then continues as a directed path
in the space under the main diagonal in the first quadrant of the square lattice.

of directed paths with empty tails. A directed path counted byD(t, z) may consist of a single
vertex, or may contain at least two edges. If such a path contains at least two edges, then
it may be cut at the first return v to the main diagonal to find an excursion, or an excursion
reflected in the main diagonal, and a remaining arbitrary directed path without a tail (that may
be the trivial path). Therefore,

D(t, z) = z + z[t2C(t) + t2C(t)]D(t, z) (29)

where the first term accounts for directed paths composed of a single vertex at the origin, and
t2C(t) is the generating function of excursions. Solving for D(t, z) shows that

D(t, z) = z

1 − 2zt2C(t)
= z

1 − z(1 − √
1 − 4t2)

= 1

2
C(t, 2z) (30)

by comparison with equation (21).
The full generating function of adsorbing directed paths, which includes tails, can be

found by first considering Dyck paths with tails. This will enable us to find a generating
function for tails, and that can be appended to equation (30). Suppose that Dyck paths with
tails are generated by Ct(t). By noting that each such path is either a Dyck path (without a
tail) or a Dyck path with a tail of at least one edge (generated by C(t)tCt (t)) (since tCt (t)
generates directed paths which start from the origin and never returns to the main diagonal),
it follows that

Ct(t) = C(t) + [tC(t)]Ct (t). (31)

Therefore,

Ct(t) = C(t)

1 − tC(t)
= 1 − 2t − √

1 − 4t2

2t (2t − 1)
. (32)

A tail can be added to an adsorbing Dyck path by noting that (1 + tCt (t)) generates either
an empty tail, or a tail above the main diagonal. Thus, Ct(t, z) = C(t, z)(1 + tCt (t)) is the
generating function of adsorbing Dyck paths with tails, whereC(t, z) is given by equation (21).
Simplifying the expression shows that

Ct(t, z) = z(1 − 2t +
√

1 − 4t2)

(1 − 2t)(2 − z(1 − √
1 − 4t2))

. (33)

In other words,Ct(t, z) has singularities whenever t = 1/2 or 2−z(1−√
1 − 4t2) = 0. Hence,

Ct(t, z) is convergent whenever t < min{1/2,√z− 1/z}, and the radius of convergence is
given by

tc(z) =
{ 1

2 if z � 2
√
z−1
z

if z > 2.
(34)

In other words, the adsorption transition is still at zc = 2, and the tail does not affect the
location of the critical point.
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The generating function (1 + tCt(t)+ tCt (t))may be appended to the generating function
D(t, z) in equation (30) to obtain the full generating function of a directed path that interacts
with the main diagonal:

Dt(t, z) = D(t, z)[1 + 2tCt(t)] = z
√

1 − 4t2

(1 − 2t)(1 − z(1 − √
1 − 4t2))

. (35)

There are (again) square root singularities in Dt(t, z) at t = 1/2. There are also simple poles
along the solution of 1 − z(1 − √

1 − 4t2) = 0. Solving for the critical values of t shows that
either t = 1/2, or t = √

2z− 1/2z. Hence

tc(z) =
{ 1

2 if z � 1
√

2z−1
2z if z > 1.

(36)

The critical point is at zc = 1, and the limiting free energy is given by

F(z) =
{

log 2 if z � 1

log 2 + log z− 1
2 log(2z− 1) if z > 1.

(37)

As before, expanding the limiting free energy for z → z+
c gives

F(z) = log 2 + 1
2 (z− 1)2 − (z − 1)3 +O((z− 1)4) (38)

so that comparison with equation (6) indicates that the specific heat exponent is α = 0. The
energy E(z) is given by

E(z) =
{

0 if z � 1
z−1
2z−1 if z > 1

(39)

and the specific heat in this model is given by

C(z) =
{

0 if z � 1
z

(2z−1)2 if z > 1.
(40)

Thus, this is again a continuous adsorption transition, as obtained for Dyck paths in section 2.2.
Comparison with equations (26) and (27) shows that this model is very similar to adsorbing
Dyck paths; they are asymptotically the same.

2.4. The Temperley method and adsorbing Dyck paths

The generating functions for adsorbing Dyck paths and adsorbing directed paths above were
all obtained by dissecting the paths resulting in a decomposition of the generating function
that gives a functional equation that may be solved. This method is powerful, and can be used
effectively in a large number of different models. It is also called a ‘wasp-waiste’ method
(since it cuts the object at a narrow part), or ‘factorization’ method [53].

Not all models may be treated by using a factorization method. The Temperley method
is an alternative that may be used in some cases. This method constructs the object a slice at
time, and the specifics are dependent on the particular model. For adsorbing Dyck paths, let
Ce(s; t, z) be the generating function of left factors of even length of adsorbing Dyck paths.
The activities t and z are introduced conjugate to length and to visits respectively, and an
activity s will be conjugate to the height of the last vertex above the adsorbing main diagonal.

An even left factor of a Dyck path may be extended by two steps if two more edges are
added to its last vertex. This may or may not change the height of the last vertex. If two
steps are appended, both away from the main diagonal (or ‘up’), then a factor of t2s should be
introduced. If one step is appended ‘up’, and the second ‘down’, or vice versa, then there is no
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(a) (b)

(c) (d)

Figure 5. The generating function Ce(s; t, z) of even length left factors of adsorbing Dyck paths
with activity s conjugate to the height of the last vertex can be determined by using the Temperley
method to add two more steps to such Dyck paths. In (a) it is noted that two more steps can be
added in four ways, generating (t2s + t2 + t2 + t2/s)Ce(s; t, z). New visits can be created as in (b)
or in (c). First observe that Ce(0; t, z) generates Dyck paths with last vertex in the main diagonal,
so that the two steps added in (b) creates a new visit, and this would be generated by t2zCe(0; t, z).
This term is also (incorrectly) included in (a) as t2Ce(s; t, z)s=0, and is duly cancelled in (d), where
paths that step below the main diagonal are also removed. Finally, note that ( ∂Ce

∂s
)s=0 generates

Dyck paths that terminates at height h = 1 above the main diagonal. A new visit may be created
as in (c), and the factor t2z( ∂Ce

∂s
)s=0 is included while the factor t2( ∂Ce

∂s
)s=0 is removed to include

a weight z for the new visit. Finally, a path may consist of a single visit at the origin.

change in the height of the last vertex, and the factor (t2 + t2) is obtained. Finally, there may
be two steps ‘down’, this corresponds to the factor t2/s. Thus, the factor (t2s + t2 + t2 + t2/s)
generates additional two steps to a left factor of a Dyck path. Appending this toCe(s; t, z)will
lengthen the Dyck path by two steps, but this must be corrected if new visits are generated, or
if the path steps below the main diagonal.

In figure 5 the construction of a mixed differential and functional equation for Ce(s; t, z)
is demonstrated by using the Temperley method. By following the arguments in figure 5, we
obtain the result that

Ce(s; t, z) = z + t2(s + 2 + s−1)Ce(s; t, z) + t2(z− 2 − s−1)Ce(0; t, z)
+ t2(z− 1)

(
∂Ce

∂s

)
s=0

. (41)

In order to solve this equation, first observe that the quantities Ce(0; t, z) and
(
∂Ce
∂s

)
s=0 are

unknown, and once they are determined, an expression for Ce(s; t, z) will be known.
By first noting that lims→0+ [Ce(s; t, z) − Ce(0; t, z)]/s = (

∂Ce
∂s

)
s=0, and then taking

s → 0+ in equation (41), one finds that

Ce(0; t, z) = z + zt2Ce(0; t, z) + zt2
(
∂Ce

∂s

)
s=0

. (42)
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Solving for
(
∂Ce
∂s

)
s=0 in terms of Ce(0; t, z), and substituting into equation (41), then gives

z(1 − t2(s + 2 + s−1))Ce(s; t, z) = z + (z − 1 − zt2 − zt2s−1)Ce(0; t, z). (43)

This equation can now be solved using the kernel method [1, 4].
Observe that Ce(0; t, z) is an even left factor and that its final vertex is a visit in the main

diagonal—that is, these are Dyck paths in the length-visit ensemble. The generating function
of these objects were determined in section 2.2, and is explicitly given in equation (21). The
kernel method will again give an expression for Ce(0; t, z). The method is implemented by
assuming that Ce(0; t, z) is a power series in t and in z. If s is selected on the left-hand side
of equation (43) to be a root of (1 − t2(s + 2 + s−1)), then Ce(0; t, z) can be determined. The
roots are

s− = 1 − √
1 − 4t2

2t2
− 1 and s+ = 1 +

√
1 − 4t2

2t2
− 1. (44)

Only the choice to substitute s = s− in equation (43) gives a power series solution for
Ce(0; t, z) with non-negative coefficients: The result is that Ce(0; t, z) = C(t, z) with C(t, z)
given in equation (21).

Finally, one may solve directly for Ce(s; t, z) by substituting Ce(0; t, z) in equation (43).
The result is that

Ce(s; t, z) = 2zt2 − sz(1 − 2t2 +
√

1 − 4t2)

(t2(s + 1)2 − s)(2 − z(1 − √
1 − 4t2))

. (45)

The phase diagram of this model can be determined by solving for tc(s, z), the radius of
convergence of Ce(s; t, z). There are several sources for singularities in Ce(s; t, z), namely a
branch point due the square root radical, and simple poles when one or the other factor in the
denominator vanishes. This shows that

tc(s, z) = min

{
1

2
,

√
s

s + 1
,

√
z − 1

z

}
. (46)

Solving explicitly for tc(s, z) from this gives

tc(s, z) =




1
2 if s � 1 and z � 2
√
s

s+1 if s � min
{
1, 1

z−1

}
√
z−1
z

if s � 1
z−1 and z � 2.

(47)

This result identifies three thermodynamic phases in this model, and the phase diagram in the
sz-plane is plotted in figure 6. If s < min{1, 1/|z − 1|} for any z then a desorbed phase of
paths with endpoint ‘close’ to the adsorbing line is obtained. In the scaling limit this model
would be indistinguishable from a model of desorbed Dyck paths. If s > 1 and z < 2 then
conformations of paths that are desorbed and that have endpoints detached from the adsorbing
line are favoured. This is a phase of desorbed paths with unattached endpoints. Finally, a
phase with z > 2 and s > 1/(z − 1) favours adsorbed paths (with a non-negative density of
visits). The density of visits favours conformations with endpoints close to the adsorbing line,
and this phase will be indistinguishable from a phase of adsorbed Dyck paths.

This model is a three-parameter model, and the phase diagram in figure 6 is the projection
of a critical surface tc(s, z) that separates a phase of finite length paths (if t < tc(s, z)) from a
phase of infinite length paths (if t > tc(s, z)). The transition from finite length paths to infinite
length paths goes through one the three critical surfaces identified in figure 6. The meeting
point of the three phases at (z, s) = (2, 1) is a triple point.
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Figure 6. The phase diagram of adsorbing Dyck paths with a tail and endpoint weighted by s.
There are three phases in this diagram: (1) a desorbed phase with an attached endpoint if s and
z are both small, (2) a desorbed phase with a free endpoint if s is large and z is small, and (3)
an adsorbed phase. These three phases meet along three critical curves that marks the transitions
between the singularities that determine the radius of convergence of Ce(s; t, z). The phases also
meet at a triple point located at s = 1 and z = 2 in the phase diagram. This shows that the
adsorption transition in the two-parameter model (which is equivalent to putting s = 1 in this
model) in section 2.2 is a multicritical point.

The complete generating function of this model can be obtained by first determining
Co(s; t, z), the generating function of odd length paths. This is readily found by adding a
single step to the paths counted by Ce(s; t, z), giving the relation

Co(s; t, z) = t (s + s−1)Ce(s; t, z)− ts−1Ce(0; t, z) (48)

where the last term subtracts paths with a step below the main diagonal, and note that no new
visits can be created by adding a single step. Adding these paths to Ce(s; t, z) gives the full
generating function that may be simplified to

C(s; t, z) = z(2t (1 − t)(1 + 2t)− (s + ts2 + t)(1 − 2t2 +
√

1 − 4t2))

(t2(s + 1)2 − s)(2 − z(1 − √
1 − 4t2))

. (49)

Putting s = 1 in this expression to recover

C(1; t, z) = z(1 − 2t +
√

1 − 4t2)

(1 − 2t)(2 − z(1 +
√

1 − 4t2))
(50)

the generating function of adsorbing Dyck paths with a tail, as also obtained in equation (33).
Finally, putting z = 1 should give the generating function of Dyck paths with a tail

Ct(t) = C(1; t, 1) = 1 − 2t − √
1 − 4t2

2t (2t − 1)
(51)

as found in equation (32).
If z = 1 in equation (49), then a model of Dyck paths with a tail and a weighted endpoint

is found. The generating function for this model is

C(s; t, 1) = 2t (1 − t)(1 + 2t)− (s + ts2 + t)(1 − 2t2 +
√

1 − 4t2)

(t2(s + 1)2 − s)(1 +
√

1 − 4t2))
. (52)



Topical Review R25

The critical curve is given by

tc(s) =
{

1
2 if s � 1
√
s

s+1 if s > 1.
(53)

The free energy for this model is

Fs(s) =
{

log 2 if s � 1

log(s + 1)− 1
2 log s if s > 1

(54)

On the other hand, for paths critical with respect to adsorption, z = 2, and the generating
function becomes

C(s; t, 2) = 2t (1 − t)(1 + 2t)− (s + ts2 + t)(1 − 2t2 +
√

1 − 4t2)

(t2(s + 1)2 − s)
√

1 − 4t2
. (55)

The critical curve in this case is also given by equation (53). Note thatC(s; t, 1) is finite along
the critical curve tc(s) for s < 1, but that C(s; t, 2) is infinite here.

2.5. The constant term formulation of adsorbing Dyck paths

The adsorbing Dyck path may be formulated as a difference equation problem with a boundary
condition that accounts for the interaction between the path and the adsorbing diagonal. This
difference equation may be solved by a constant term formula [6]. This technique is technically
much more difficult to use than generating function approaches derived from a Temperley or
decomposition method, but it has the advantage that expressions for the partition function of
the problem can also be found.

The appropriate differential equation for adsorbing Dyck paths may be found by first
noting that there is a bijection from Dyck paths onto random walks from the origin on the
non-negative integer axis. This map is most easily described by projecting the Dyck path
into the anti-diagonal in the square lattice to obtain a random walk that starts and terminates
at the origin, and otherwise steps only on that half of the anti-diagonal with non-negative
y-coordinates.

Let vn(j ; j0) be the number of random walks from j0 � 0; on the non-negative integer
line, ending in the vertex j , and with each random walk weighted by zv where v is the number
of visits of the random walk to the origin at j = 0. Then vn(j ; j0) is the partition function
of directed paths of length n, starting at height j0, and ending at height j , above the main
diagonal, and with visits to the main diagonal weighted by z. Continue by suppressing the
explicit dependence on j0, and note that vn(j) ≡ vn(j ; j0) satisfies the difference equation

vn(j) = vn−1(j − 1) + vn−1(j + 1) ∀j � 1 and ∀n � 1

vn(0) = zvn−1(1) ∀n � 1
(56)

where the boundary condition picks up factors of z each time the random walk visits the origin.
The function

qn(j) = (eik + e−ik)n(A1 eijk + A2 e−ijk) (57)

is a solution of equation (56) for any real choice of k ∈ (−π, π], due to the periodicity of the
complex exponentials. Substitution of (57) into (56) shows that

A1

A2
= − (e

ik + e−ik)− z e−ik

(eik + e−ik)− z eik
= S(k). (58)
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The scattering function S(k) describes the scattering of the walk from the origin via the
boundary condition in equation (56). The full solution of equation (56) is

vn(j) =
∫ π

−π
A2(eik + e−ik)n[e−ijk + S(k) eijk] dk. (59)

In this expressionA2 is an arbitrary function of k, and it should be fixed by the initial condition
of the walk: the walk started at j0. It also follows from equation (57) that reversal of the walk
occurs if k → −k. The factor (eik + e−ik)n in equation (59) generates n steps in the walk, and
so one should take n = 0, j = j0 and k → −k to fix the initial position of the walk at j = j0.
Thus,

A2 = C0[eij0k + S(−k) e−ij0k] (60)

in equation (59), and note that S(−k) = 1/S(k) to obtain an integral expression for
vn(j) ≡ vn(j ; j0):

vn(j) = C0

∫ π

−π
(eik + e−ik)n[ei(j−j0)k + S(k) ei(j+j0)k] dk (61)

where symmetry of the integral was used and a factor of 2 was adsorbed into C0. The
substitution ζ = eik can be made to turn equation (61) into a contour integral around the unit
disk in the ζ -plane. Denote ζ ∗ = 1/ζ , then it follows that

vn(j) = C0

∮
C

[
(ζ + ζ ∗)n

{
ζ j−j0 −

(
ζ + ζ ∗ − zζ ∗

ζ + ζ ∗ − zζ

)
ζ j+j0

}]
dζ

iζ
. (62)

The residue theorem may be applied to this contour integral. In that case it selects the constant
term (multiplied by a factor of 2π) from the Laurent series of the integrand in square brackets
about ζ = 0. Define the operator CT [·] to select this constant term, then up to an unknown
constant C0 (into which all constant factors are adsorbed), the constant term solution to the
difference equation (56) is given by

vn(j) = C0CT

[
(ζ + ζ ∗)n

{
ζ j−j0 −

(
ζ + ζ ∗ − zζ ∗

ζ + ζ ∗ − zζ

)
ζ j+j0

}]
. (63)

If j = j0 = 0, then this should reduce to the adsorbing Dyck path partition function. C0 may
be fixed by considering this case. Since only even length paths are encountered in that model,
replace n by 2n and expand the resulting factor (ζ + ζ ∗)2n to find that

v2n(0; 0) = C0CT

[
2n∑
l=0

(
2n
l

)
ζ 2n−2l

(
z(1 − ζ 2)

1 + (1 − z)ζ 2

)]

= zC0

n∑
l=0

[
2l + 1

n + l + 1

](
2n
n + l

)
(z− 1)l. (64)

First taking l = 0, followed by n = 0, then shows that v2n(0, 0) = zC0 + · · ·, and one may fix
C0 = 1, since the trivial Dyck path is a single vertex at the origin. The generating function of
adsorbing Dyck paths may be determined by putting j = j0 = 0. Multiplying equation (64)
by t2n and summing over n gives equation (21).

The partition function for arbitrary j and j0 can be determined by expanding the factors
in equation (63) and then selecting the constant term:

vn(j ; j0) =
(

n
n+j−j0

2

)
−
(

n
n+j+j0

2

)
+ z

(n−j−j0)/2∑
l=0

[(
n

n+j+j0

2 + l

)
−
(

n
n+j+j0

2 + l + 1

)]
(z− 1)l.

(65)
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The first two terms count random walks on the positive integer axis, starting at j0, and
terminating at j , while avoiding the main diagonal. These are also directed paths starting at a
height j0 and terminating at a height j , and otherwise are disjoint with the main diagonal. The
full generating function may be determined by multiplying equation (66) by tn and summing
over n:

Ce(t, z; j0, j) = (2t)j+j0

(1 +
√

1 − 4t2)j+j0

(
2z

2 − z(1 − √
1 − 4t2)

)
. (66)

Putting j0 = 0 and summing over j gives the generating function of a Dyck path with a tail; it
visits the main diagonal a last time and then wanders off in the square lattice. This generating
function is given by

Ct(t, z) = z(1 − 2t +
√

1 − 4t2)

(1 − 2t)(2 − z(1 − √
1 − 4t2))

(67)

and it was previously obtained in equation (33).

2.6. Dyck path models of adsorbing copolymers

Directed path models of adsorbing copolymers can be created by colouring vertices in the
path, and then giving them separate properties. Such models are defined in reference [64], and
also for self-avoiding walk models of copolymers in [47].

A linear copolymer is a linear polymer with two or more different types of monomers
substituted along the polymer chain. In some cases the types of monomers along the polymer
may be random, this is a random copolymer. If the (random) sequence of monomers are fixed
along the copolymer, then the copolymer is said to be quenched.

There are copolymers that have a sequence of monomers that repeats periodically. Such
copolymers are periodic, and the length of the repeating sequence is its period. An alternating
copolymer is a periodic copolymer of period 2; it has two types of monomers that alternate in
sequence along the copolymer. In some periodic copolymers the repeating sequence has the
form

(
A
n1
1 A

m2
2 . . . A

mp
p

)∗
. These are block copolymers of period n1 + n2 + · · · np. If p = 2 and

n1 = n2, then we have an alternating block copolymer.
The simplest lattice model of an adsorbing copolymer is a Dyck path with coloured

vertices and with visits weighted according to colour. If the vertices of a Dyck path are
labeled by 1, 2, 3, . . . , starting from the origin, then only vertices with odd labels (called odd
vertices) may visit the main diagonal. In other words, if the path is coloured by a sequence of
coloursχ = 〈C1, C2, C3, . . .〉, then the coloursCi will be placed only on the odd vertices—the
even vertices will remain colourless, since they cannot interact with the main diagonal. It is
generally a difficult problem to determine the generating function of a Dyck path model of
a quenched copolymer, even in the cases that the copolymer has a simple structure, such as
being a block copolymer.

2.6.1. Adsorbing random copolymers in the annealed ensemble. Consider a Dyck path
coloured with two colours A and B, such that any odd vertex has a probability p of being
colour A, and 1 − p to be of colour B. Simplify this model by assuming that only vertices
of colour A adsorb (interacts) in the main diagonal. In the annealed ensemble the partition
function of the Dyck path is averaged over the set of all possible colourings of the path. This
model corresponds to the (rather unphysical) situation that monomers in the copolymer can
change their colours (properties) randomly.

The generating function in the annealed model can be determined by noting that in every
realization of the path with v visits, each visit is type A with probability p and type B with
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probability 1 − p. If w � v visits are of type A, and there are cn(v) Dyck paths with v visits,
then the generating function is

Ca(t, z;p) =
∞∑
n=0

n+1∑
v=0

v∑
w=0

cn(v)

(
v

w

)
(pz)w(1 − p)v−wtn. (68)

This may be evaluated in closed form by noting that

Ca(t, z;p) =
∞∑
n=0

n+1∑
v=0

cv(v)(pz + 1 − p)vtn = C(t, pz + 1 − p) (69)

whereC(t, z) is the generating function of adsorbing Dyck paths given by equation (21). Thus

Ca(t, z;p) = 2(pz + 1 − p)

2 − (pz + 1 − p)(1 − √
1 − 4t2)

(70)

is the generating function of the adsorbing Dyck path in the annealed ensemble. The radius
of convergence is given by

tc(z;p) =
{ 1

2 if z � 1 + 1
p√

p(z−1)
1+p(z−1) if z > 1 + 1

p
.

(71)

The critical point depends on the probability by

zc(p) = 1 +
1

p
. (72)

One may explicitly compute the limiting free energy in this model, and expanding it about
z = zc(p) shows again that the specific heat exponent has value α = 0.

2.6.2. Quenched models of Dyck path copolymer adsorption. A quenched random
copolymer is obtained when the (random) sequence of monomers is fixed along the copolymer
chain. This may be modelled by a randomly coloured Dyck path with the sequence of coloured
vertices fixed along the path in a particular (random) sequence. The averaged quenched model
is that ensemble where the free energy of the model is averaged over all possible random
colourings.

Let 〈χi〉 be a sequence of colours (for example,eachχi is selected from the set	 = {A,B},
but more colours can be included). A Dyck path is then coloured by colouring the (2i − 1)th
vertex v2i−1 with χi , where v1 is the first vertex in the Dyck path at the origin of the square
lattice. A model can be defined by letting cn(v, va |χ) be the number of Dyck paths of length n
coloured by the first n/2 + 1 colours in χ , and with v visits of which va visits are A-coloured.

The partition in such a model is

Zn(z, a|χ) =
∑
v,va

cn(v, va |χ)zvava (73)

and in the limit that n → ∞, the quenched limiting free energy would be defined by

Fqu(z, a|χ) = lim
n→∞

1

n
logZn(z, a|χ) (74)

if this limit exists3. It can be shown that there is a limiting free energy in the averaged
quenched model; this is defined by

Fqu(z, a) = lim
n→∞

1

n
〈logZn(z, a|χ)〉χ (75)

3 Fqu(z, a|χ) is defined on the space of sequences 〈χi 〉 on the set 	. If there are n colours, then the 〈χi 〉 are n-ary
expansions of numbers in the interval [0, 1]. This implies that Fqu(z, a|χ) be considered a function over a Lebesgue
measure space of sequences of colourings, defining an integral over the space of colourings, from which averages
such as 〈·〉χ over all colourings can be defined.
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Figure 7. The Dyck path generating function of an alternating copolymer is either a single A-visit,
or return for the first time to the main diagonal in an A-visit, or return for the first time to the main
diagonal in a B-visit. If it returns first in a B-visit, then it could return any number of times in
B-visits before a return to an A visit is obtained. Since the last vertex is an A-visit, it is guarenteed
that there will be a return to an A-visit.

where 〈·〉 is the average over all possible colouringsχ . A proof of this is given in the appendix.
It can also be shown that

Fqu(z, a) = lim
n→∞

1

n
logZn(z, a|χ) for almost every colouring χ (76)

so that the averaged quenched free energy is almost always equal to the quenched free energy
(with respect to a uniform measure on the space of all colourings). Since Fqu(z, a|χ) =
Fqu(z, a) a.e., it follows that the free energy model is self-averaging and that Fqu(z, a|χ) is a
measurable function on the measure space of colourings (this is [0, 1] with Lebesgue measure,
since each n-ary expansion of a number x ∈ [0, 1] would give a sequence of colours in the set
{1, 2, . . . , n}). There are number of self-avoiding walk and lattice tree models of copolymers
that are known to have self-averaging free energies [47, 41, 42, 67]. Self-averaging in lattice
models of polymers was also discussed in [48]—in particular, conditions were set out under
which self-averaging of the limiting free energy will also imply self-averaging of the energy
and the specific heat of the model (these are the first two derivatives of the limiting free
energy). Bounds on the extent of self-averaging in finite models of random copolymers were
presented in [33].

Explicit formulae for quenched models of coloured Dyck paths are known in only
a few cases. One may, for example, solve for a model with the alternating colouring
ξ = ABABABABA . . . . The starting point is to first find the generating function C4(t) of
Dyck paths of length 0 mod 4: Since Dyck paths are counted by Catalan numbers, it follows
by direct computation that

C4(t) =
√

2√
1 +

√
1 − 16t4

. (77)

Consider now Dyck paths of length 2 mod 4 with generating function C2(t). By subtracting
C4(t) from the generating function C(t) (equation (19)) of Dyck paths, one obtains

C2(t) = 2 − 2
√

1 − 16t4

2 +
√

1 − √
1 − 16t4

. (78)

Using the C4(t) and C2(t), it is possible to determine Cco(t, z, a; ξ), the generating function
of adsorbing Dyck paths quenched by ξ and with az generating A-coloured visits and z
generating B-visits. It follows from figure 7 that

Gco(t, z, a; ξ) = az + azt2G2(t)Gco(t, z, a; ξ) + az2t4[G4(t)]2Gco(t, z, a; ξ)
+ az3t6[G4(t)]

2G2(t)Gco(t, z, a; ξ) + · · · , (79)

so that one may solve forGco(t, z, a; ξ) in term of G2(t) and G4(t):

Gco(t, z, a; ξ) = z

1 − azt2G2(t)− az2t4[G4(t)]2

1−zt2G2(t)

. (80)
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Consider now the case that z = 1, so that only A-visits interact with the main diagonal. Then
the radius of convergence is given by

tξ (1, a) =



1
2 if a � 2 +

√
2

[
√√

8a3−20a2+16a−4]
2a if a � 2 +

√
2.

(81)

The critical adsorption point is at

aξ = 2 +
√

2. (82)

The limiting free energy may be computed from tξ (a), the result is that

Fco(1, a; ξ) =
{

log 2 if a � aξ

log(
√

2a)− log(
√
(a − 1)

√
2a − 1) if a > aξ .

(83)

There are more results known for other sequences [64]. Calculating the location of the critical
point in quenched models remains generally an open question.

2.6.3. Adsorption of a {ABp−1}∗A coloured Dyck path. The ideas in section 2.2, and in
particular the exchange relation in equation (22), may be used to find an expression for the
generating function for adsorbing Dyck paths coloured by χp = {ABp−1}∗A, where each
type of monomer interacts differently with the main diagonal. The generating function of this
model is

C(t, z, a|χp) =
∞∑
n=0

∑
v,a

= cn(v, va)z
vava tn (84)

where cn(v, va) is the number of Dyck paths of length n coloured by χp with v visits (of any
colour) and va visits of colourA. Consistent with the last section, az generatesA-visits, while
z generate B-visits.

To determine C(t, z, a|χp), first define Up(t, z) to be the generating function of Dyck
paths of length 0 mod 2p, and with visits generated by z, and edges by t. Observe thatUp(t, z)
is given by

Up(t, z) = 1

p

p−1∑
j=0

C(βj t, z) where β = eiπp (85)

in terms of C(t, z), the generating function of adsorbing Dyck paths is given by equation (21).
Define L(t, z, a|χp) to be the generating function of Dyck paths coloured by χp and of length
0 mod 2p, with visits (of any colour) generated by z, and with A-visits generated by a. By
following the arguments leading to equation (22) with Dyck paths of length 0 mod 2p and
partially coloured by χp, one establishes the exchange relation

aL(t, z, a|χp)(Up(t, z)− z) = (L(t, z, a|χp)− za)Up(t, z) (86)

between L(t, z, a|χp) and Up(t, z). Solving explicitly for L(t, z, a|χp) gives

L(t, z, a|χp) = zaUp(t, z)

za + (1 − a)Up(t, z)
. (87)

To find an expression for the full generating function argue as follows: Each Dyck path counted
by C(t, z, a|χp) may be factored by cutting it in its last A-visit into a Dyck path of length
0 mod 2p, coloured by χp, and into a remainder of arbitrary length and with noA-visits. Thus

C(t, z, a|χp) = L(t, z, a|χp)C(t, z, 0|χp). (88)
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Now put a = 1 in this equation, and solve for

C(t, z, 0|χp) = C(t, z, 1|χp)
L(t, z, 1|χp) = C(t, z)

Up(t, z)
(89)

where it was observed that Up(t, z) = L(t, z, 1|χp). Using equations (88) and (89) in
equation (87), then shows that

C(t, z, a|χp) = zaC(t, z)

za + (1 − a)Up(t, z)
. (90)

The generating function C(t, 1, a|χp) generates walks with only A-visits adsorbing.
One may also take a → 1/a and then replace z → a to obtain the generating function
of adsorbing paths with the complementary colouring χ̃p = {BAp−1}∗B and with only the
A-visits adsorbing:

C(t, 1, a|χ̃p) = C(t, a, 1/a|χp). (91)

The location of the critical adsorption point ac(p) in these models is a more challenging
problem. Clearly, ac(1) = 2 from equation (24), and it follows from equation (82) that
ac(2) = zξ = 2 +

√
2. It is possible to find ac(p) for the next values of p, but this soon

becomes a difficult task, and no general sequence of exact values are known [64].
Instead, it is possible to develop an asymptotic expression for ac(p) [57]. There are

two sources of singularities in C(t, 1, a|χp); namely square root singularities in C(t, 1) and
Up(t, 1), and simple poles whenever the denominator vanishes; this is given by solutions of

a

a − 1
= Up(t, 1). (92)

Observe also from equations (85) and (21) that

Up(t, 1) = − 1

p

p−1∑
j=0

√
1 − 4t2β2j

2t2β2j
where β = eiπp. (93)

The singularity in Up(t, 1) on the real axis is at t = 1/2, and this should determine the radius
of convergence for C(t, 1, a|χp) at small values of a. For larger a, the simple poles given
at values of t defined by the solution of equation (92) determines the radius of convergence,
and these two sources of singularities coincides whenever a/(a − 1) = Up(1/2, 1). In other
words, the critical adsorption activity is given by

ac(p) = Up(1/2, 1)

Up(1/2, 1)− 1
. (94)

To find an asymptotic expression for ac(p), one must find asymptotics forUp(1/2, 1) in p, the
period of the colouring.

Observe that Up(t, 1) is the generating function of Dyck paths of length 0 mod 2p. Since
Dyck paths are counted by Catalan numbers, it follows that

Up

(
1

2
, 1

)
= 1 +

∑
n>1

(
2np
np

)
4−np

np + 1
. (95)

There exists an M > 0 such that Catalan numbers are bounded by∣∣∣∣∣
(

2n
n

) √
πn3

(n + 1)4n
−
(

1 − 9

8n
+

145

128n2

)∣∣∣∣∣ < M

n3
. (96)
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To see this, follow theorem 5.2 in chapter 5 of Flajolet and Sedgewick (or see lemma 4.4 in
[57]). Substitution of this into the previous expression for Up

(
1
2 , 1
)

shows that

Up

(
1

2
, 1

)
∼ 1 +

1√
πp3

(
ζ

(
3

2

)
− 9

8p
ζ

(
5

2

)
+

145

128p2
ζ

(
7

2

)
+O

(
1

p3

))
. (97)

Substitution into equation (94), then leads to

ac(p) ∼
√
π

ζ
(

3
2

)p3/2 +
9
√
πζ
(

5
2

)
8
(
ζ
(

3
2

))2 p1/2 + 1 +O(p−1/2) (98)

up to the first decaying term.
The analysis of this model with the complementary colouring χ̃p colour sequence is more

problematic, and remains unsolved. The generating function is

C(t, a, 1/a|χp) = aC(t, z)

a + (a − 1)Up(t, a)
. (99)

There are again square root singularities present inC(t, a) andUp(t, a) at t = 1/2. Whenever
a > 2, there are also poles in both C(t, a) and Up(t, a) at t = √

a − 1/a, but it can
be shown that these cancel [57]. Finally, there is a curve of poles along solutions of
a + (a− 1)Up(t, a) = 0 so that the critical point is determined by the solution of

a + (a − 1)Up
(

1
2 , a
) = 0. (100)

To see all of the above, define

f (t, a) = a(2 − a − a
√

1 − 4t2)

2(1 − a)
φ(a) = a2

a − 1
(101)

so that

C(t, a) = f (t, a)

1 − φt2
Up(t, a) = 1

p

p−1∑
p=0

f (tβj , a)

1 − φt2β2
. (102)

Then it follows that

C(t, a, 1/a|χp) = af (t, a)

a−1
p
f (t, a) + (1 − φt2)

(
a + a−1

p

∑p−1
j=1

f (tβj ,a)

1−φt2β2

) . (103)

Along the curve 1 − φt2 = 0 it follows that C(t, a, 1/a|χp) = ap/(a − 1). Thus, the
simple poles in C(t, a) and Up(t, a) cancel. The remaining poles in Up(t, a) are zeros of
C(t, a, 1/a|χp) and correspondingly they do not give rise to singularities either.

If t = 1/2 and φ < 1, then the square root singularities do not cancel. The simple
poles along the curve a + (a − 1)Up(t, a) = 0 intersects the line t = 1/2 to give ãc(p), the
critical point in this model. If one should naively repeat the analysis performed above to find
asymptotics for Up(1/2, a), then a problem is encountered as a → 2+ along t = 1/2. This
occurs because the poles along a+(a−1)Up(t, a) = 0 approaches the branch point at t = 1/2
as t → 1/2 and a → 2+. This is confirmed by numerical analysis [57], and this also shows
that

ãc(p) ∼ 2 +
c1

p
+O

(
1

p3/2

)
(104)

where c1 does not differ from 1 by more than one digit in 104. It is conjectured that c1 = 1
[57]. The critical exponents in this model is the same as for adsorbing Dyck paths; only the
location of the critical point is different.
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2.7. Adsorbing Dyck paths with an area activity

A Dyck path has both its terminal vertices fixed at the main diagonal, and it encloses an area
above the diagonal and below the path. The minimum area enclosed is obtained when every
second vertex in the path is a visit: a path of length n will enclose a minimum area n/4 unit
squares above the main diagonal. On the other hand, it can be checked that the maximum area
that can be enclosed is n2/8 unit squares. Define the area of a Dyck path C to be

Area(C) = [Area under C] − n/4. (105)

Then 0 � Area(A) � n2/8 − n/4, and only the number of unit lattice squares, completely
above the main diagonal and underneath the Dyck path, is counted as area.

Suppose that t generates length, and that the activity q generates area under the Dyck
path. The generating function of Dyck paths in the length–area ensemble is C(t, q), and an
expression for C(t, q) can be obtained by determining a functional recurrence. If a Dyck path
generated by C(t, q) is translated away from the main diagonal to create an excursion, then
each edge in the path generates 1/2 unit square of area. Thus, excursions with enclosed area
generated by q will be counted by t2C(t

√
q, q). Dissecting a Dyck path at its first return to

the main diagonal (see figure 3 and equation (20)) gives

C(t, q) = 1 + [t2C(t
√
q, q)]C(t, q). (106)

Solving for C(t, q) results in the expression

C(t, q) = 1

1 − t2C(t
√
q, q)

. (107)

where t2C(t
√
q, q) generates excursions, so that C(t, q) is given by a sum of powers of

[t2C(t
√
q, q)], first Dyck paths that are excursions are counted, then Dyck paths composed

of two excursions are counted, and so on.
Equation (107) can be iterated to give an infinite fraction representation of the generating

function:

C(t, q) = 1

1 − t2

1 − qt2

1− q2t2

...

≡ 1/1 − t2/1 − t2q/1 − t2q2/ · · · (108)

where the last expression is short-hand for the infinite fraction. By Worpitsky’s theorem [63]
the infinite fraction converges if |t2qn| � 1/4 for all n. Therefore, if t2 � 1/4 then the radius of
convergence is qc(t) = 1. For larger values of t and q small enough C(t

√
q, q) will converge,

but there will be a simple pole in C(t, q) determined by the solution of 1 − t2C(t
√
q, q) = 0.

Observe also that

C(t, q) > 1 + t2C(t
√
q, q) (109)

and this shows that if 1 − t2C(t
√
q, q) → 0 for large enough t, then C(t, q) → ∞ via a

simple pole if t is big enough.
It is possible to find a solution for C(t, q) as the ratio of two q-deformed exponentials.

Equation (106) implies that C(t, q) = 1 + α1t
2 + α2t

4 + · · · so that only even powers of t
should occur in C(t, q). Make the following ansatz:

C(t, q) = α

[
H(t2q)

H(t2)

]
. (110)

Substitution into equation (106) and simplification gives the linear second-order functional
recursion

α2t2H(t2q2)− αH(t2q) +H(t2) = 0. (111)
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Assuming that H(t2) = 1 +O(t2) then implies that

α2t2 − α + 1 +O(t2) = 0. (112)

The only choice for α that cancels the constant terms above is α = 1; this reduces
equation (111) to the following functional recursion for H(t2):

t2H(t2q2)−H(t2q) +H(t2) = 0. (113)

This may be solved by assuming an infinite series solution. Substitute σ = t2 in the above to
find [σH(σq2)−H(σq)+H(σ)] = 0 and make the ansatzH(σ) =∑n�0 αnσ

n. Substitution
into the recurrence shows that

αn = q2(n−1)

qn − 1
αn−1. (114)

Putting α0 = 1 and iterating this recurrence shows that

αn = (−1)nqn(n−1)∏n
j=1(1 − qj )

= (−1)nqn(n−1)

(q; q)n (115)

where the q-deformed factorial defined by

(σ ; q)n =
n∏
j=1

(1 − σqj−1) (116)

was used. Thus, a solution for C(t, q) as a ratio of two infinite series is obtained. Since
C(t, q) is also a continued fraction (equation (108)), one finds that

C(t, q) =
∑∞

n=0
(−1)nqn

2
t2n

(q;q)n∑∞
n=0

(−1)nqn(n−1)t2n

(q;q)n
= 1/1 − t2/1 − t2q/1 − t2q2/ · · · (117)

and the result is a non-trivial identity involving a ratio of infinite series on the left-hand side,
and an infinite fraction on the right-hand side. The function

E(t2, q) =
∞∑
n=0

(−1)nqn
2
t2n

(q; q)n (118)

is the q-exponential, and C(t, q) may be expressed as the ratio

C(t, q) = E(t2, q)

E(t2/q, q)
. (119)

This result was also mentioned in [22], and is related to the Rogers–Ramanujan identities and
the fountain of coins problem [46].

Finding the limiting free energy of this model requires the determination of the radius of
convergence of C(t, q). This problem is unsolved, but the critical point can be determined. It
was already pointed out that C(t, q) converges if q � 1 and t2 � 1/4; a result that follows
from Worpitsky’s theorem. Moreover, C(t, q) is divergent for real q > 1 so that if t2 � 1/4,
then qc(t) = 1. The essential singularity in E(t2, q) above determines qc(t) in this regime.

Setting q = 1 in equation (117) and solving explicitly givesC(t, 1) in equation (19). This
gives the point (t, q) = (1/2, 1) as a candidate for a critical point. If t = 1/2 then the infinite
fraction reduces to

C(1/2, q) = 1

1 − 1/4

1 − q/4

1− q2/4
1−···

(120)
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Figure 8. The radius of convergence qc(t) for inflating Dyck paths. The critical point is tc = 1/2.
For t < 1/2, the radius of convergence of qc(t) is determined by an essential singularity in C(t, q)
as q ↗ 1. Along the critical curve qc(t), for t > 1/2, the radius of convergence is determined by
a simple pole given by the solution of 1 = t2C(t

√
q, q).

which have an essential singularity at q = 1, as may be observed from equation (119) (since
(q; q)n = 0 for all n if q = 1).

The q-exponential (equation (118)) is absolutely convergent if |q| < 1. Thus E(t2, q)
is an analytic function if |q| < 1, and C(t, q) is a meromorphic function in the unit circle
|q| < 1 (it is the ratio of two holomorphic functions). It follows that singularities in C(t, q)
are given in this domain by roots of E(t2/q, q). For t2 > 1/4 there is a singularity along the
curves 1 = t2C(t

√
q, q). In this case, qc(t) < 1, and since it was noted in equation (109)

that C(t, q) > 1 + t2C(t
√
q, q), it follows that the radius of convergence of C(t, q) is given

by the solution of t2C(t
√
q, q) = 1, corresponding to a zero of E(t2/q, q). This is a curve of

simple poles in the tq-plane. In other words

qc(t)

{
=1 if t � 1

2

<1 if t > 1
2 .

(121)

A plot of qc(t) is similar to that of tc(z) in figure 2, this is shown in figure 8.
The Dyck path with area and perimeter activities are said to be a model of inflating Dyck

paths. This term refers to the ratio of area to perimeter in different phases. Inverting the
function qc(t) to tc(q) gives a limiting free energy as a function of the area activity. One may
check that qc = 1 is the critical point, and the derivative of F(q) to log q is positive if q < 1.
Thus, the density of perimeter edges to area is positive if q < 1. If q > 1, then F(q) = ∞,
and by first noting that tc(q) = 0 if q > 1, one may conclude that the ratio of perimeter edges
to area is zero in this regime. That is, the Dyck path is inflated like a blister on the main
diagonal.

This model is related to partition polygons (see for example [60]). In this model, the
area–perimeter generating function is given by

Gp(t, q) =
∞∑
n=0

t2n

(t2q; q)n =
∞∑
n=0

t4nqn
2

(t2q; q)2n
. (122)

The phase diagram in this model is simpler; the phase boundary can easily be seen to be given
by

qc(t) =
{

1 if t � 1
1
t2

if t > 1.
(123)

The singularity along qc(t) = 1 is an accumulation of simple poles along the curves t2mq = 1
form = 1, 2, . . . and is thus an essential singularity. For t > 1 the phase boundary is a simple
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pole. It can be checked that the transition at tc = 1 is similarly an inflation if the partition
polygon [54]. Results for an inflating transition have also been obtained in area–perimeter
models of staircase polygons, and a variety of other convex and partially convex models of
lattice polygons, and partially directed walks [7, 9, 12, 53].

2.7.1. Adsorbing and inflating Dyck paths. Dyck paths may be studied in an adsorbing
and inflating model if an activity z conjugate to the number of visits in the main diagonal is
introduced in the model. Such a Dyck path is either a single visit, or consists of an excursion
(with an area activity and no visits), followed by a Dyck path with both an area and a visit
activity. The functional recurrence for the perimeter–area–visit generating function C(t, q, z)
is

C(t, q, z) = z + [zt2C(t
√
q, q)]C(t, q, z). (124)

This may be solved by first writing

C(t, q, z) = z

1 − zt2C(t
√
q, q)

(125)

and from this an infinite fraction solution may be developed for C(t, q, z):

C(t, q, z) = z/1 − zt2/1 − t2q/1 − t2q2/1 − t2q3/1 − · · · . (126)

The radius of convergence in the q-plane may be determined by applying Worpitsky’s theorem:
In this case, if both |zt2| � 1/4 and |t2qm| � 1/4,m = 1, 2, . . . , thenC(t, q, z) is convergent
in the q-plane. Singularities may arise if either z is increased, resulting in a simple pole in
C(t, q, z), or t is increased; to see this, arguments similar to those in section 2.7 may be used.
Putting z = 1 reduces the model to inflating Dyck paths encountered in the last section, while
if q = 1 the model of adsorbing Dyck paths in section 2.2 is obtained.

Consider first the tz-plane: observe that qc(t, z) � 1 for all values of t and z. If t � 1/2
then it follows that for small enough values of z

C(t, 1, z) = 2z

2 − z(1 − √
1 − 4t2)

if t � 1/2 and z is small. (127)

This is the adsorbing Dyck path generating function, first derived in equation (21) (see
figure 3). A simple pole develops in C(t, 1, z) as

z ↗ zc(t) = (1 +
√

1 − 4t2)

2t2
= 2

1 − √
1 − 4t2

. (128)

This phase with t < 1/2 and z < zc(t) is a phase of desorbed Dyck paths. In this regime,
qc(t, z) = 1, and it corresponds to an essential singularity in C(t, q, z); as one would see by
using the same arguments as for C(t, q) above (this also corresponds to the line of essential
singularities in figure 8).

In the event that t < 1/2 and z > zc(t), then a simple pole determines qc(t, z);
this can be computed by solving zt2C(t

√
q, q) = 1. Since Worpitsky’s theorem bounds

2/3 � C(t
√
q, q) � 2 for values of q within the radius of convergence of the infinite fraction,

this shows that zc(t) � 2 if t � 1/2, consistent with equation (128) above. This is a phase of
adsorbed paths.

Lastly, if t > 1/2 then a simple pole determined by zt2C(t
√
q, q) = 1 determines the

radius of convergence, for any z > 0. This is a phase of adsorbed paths, with a positive density
of visits in the main diagonal. This phase is indistinguishable from the phase with t < 1/2
and z > zc(t). In other words, there are two phases in this model, a desorbed-inflated and an
adsorbed-deflated phase.
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Figure 9. The phase diagram of adsorbing Dyck paths in the zt-plane. For small z and t the
radius of convergence of C(t, q, z) is qc(t, z) = 1 and this is an essential singularity in C(t, q, z)
that corresponds to a phase of desorbed Dyck paths. Increasing z so that z > zc(t) =
(1 +

√
1 − 4t2)/2t2, or t > 1/2, takes the model to a phase of adsorbed Dyck paths with radius of

convergence determined by the solution of zt2C(t
√
q, q) = 1.

Figure 10. The phase diagram of adsorbing and inflating Dyck paths in the qz-plane. For q < 1
the radius of convergence of C(t, q, z) is determined by zt2C(t

√
q, q) = 1, giving a simple pole in

C(t, q, z) and defining an adsorbed phase. If q = 1, then the model has generating function given
by equation (127), with a critical adsorption activity zc = 2. If q = 0, thenC(t, 0, z) = z/(1−zt2),
so that there is a simple pole at tc(0, z) = 1/

√
z. Thus, the Dyck path is adsorbed for all values of

z > 0 if q = 0. The path is trivially desorbed for all z = 0. If q > 1, then the path is inflated (and
desorbed) for all z � 0 and moreover, tc = 0.

An alternative point of view is presented if the qz-plane is considered. The radius of
convergence in that case is tc(q, z) and the limiting free energy (per edge) is − log tc(q, z).
The infinite fraction C(t

√
q, q) is divergent if q > 1 for every t > 0, so that tc(q, z) = 0 for

all z > 0 and q > 1. This is a phase of inflated (and desorbed) Dyck paths. Putting q = 1
gives equation (127), so that there is a critical point at zc = 2. In particular, if z < 2, then
there is a branch point singularity in C(t, 1, z) at t = 1/2, and if z > 2 then a simple pole
appears in C(t, 1, z) at tc = √

z− 1/2.
Consider now the case that q < 1. If q = 0, then one may check that C(t, 0, z) =

1/(1 − zt2) with the result that tc(z) = 1/
√
z in the qz-plane. This is analytic in z, except

at z = 0, so that the adsorption transition takes place at z = 0. If 0 < q < 1 then
tc(q, z) are determined by a simple pole in C(t, q, z), when zt2C(t

√
q, q) = 1. This is an

adsorbed (and deflated) phase. The phase diagram is illustrated in figure 10. By Worpitsky’s
theorem, 2/3 � C(t, q) � 2 inside its radius of convergence. In either case, this shows that
tc(q, z) ∼ 1/

√
2z asymptotically, for all q < 1. If q = 1, then the path is desorbed for z < 2

and adsorbed for z > 2. There may be a phase boundary joining z = q = 0 and (z = 2, q = 1)
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separating adsorbed and desorbed phases as stated in [35]. However, a partially directed model
has no such boundary [49], and the path may be adsorbed (and deflated) with an adsorption
transition at z = 0 (where the path is trivially desorbed).

3. Statistical mechanics of Dyck paths

In section 2 a variety of models of adsorbing and inflating Dyck paths were considered.
Generating functions were obtained, and via equation (8) the limiting free energies of these
models were determined by finding the radius of convergence (tc(z) or qc(t)) of the generating
functions as a function of activities z or t. The limiting free energy, F(z), was determined per
unit length or per unit area, and so is a density. Derivatives of F(z) are the energy density and
the specific heat (equation (4)).

Scaling laws for these thermodynamic quantities introduced a scaling exponent α in
equations (5) and (6). The exponent α describes the shape of the specific heat (or of the
limiting free energy) close to the critical point; and since these are related to the radius of
convergence of the generating function via equation (8), one would suppose that it is also
related in some way to the generating function and in particular to the shape of the critical
curve tc(z) close to the critical point.

There is more to this, and a full physical picture only emerge from the theory of tricritical
scaling [39, 11]. The generating functions typically have phase diagrams such as in figures 2
and 8. In these cases a non-analytic point in the critical curve tc(z) (or qz(t)) is identified as a
critical point in the thermodynamic sense. This point is also present in the limiting free energy,
and in that instance is by definition a critical point that separates two thermodynamic phases,
since it is a non-analyticity in the free energy F(z). The interesting fact in figures 2 and 8 is
that the nature of the singularity in the generating function also changes at the critical point. In
figure 2 it changes from a branch point to a pole, and in figure 7 from an essential singularity
to a pole. The singularity in the critical curve at the critical point may be yet different again.
This suggests that there should be a general theory for the description of critical behaviour
that relies on the analysis of both the nature of the singularities in the generating function, as
well as the shape of the critical curve close to the critical point. This general theory forms the
framework that describes tricritical and multicritical points.

The partition function and limiting free energy defined in equations (1) and (3) is the
basic starting point. Since the energy density E(z) is finite, and is asymptotic to a number E
(as log z → ∞), it is not unreasonable to suppose that

F(z) ∼ S + E log z. (129)

If one interprets log z as proportional to inverse temperature, then one may call S (or its
negative) the limiting entropy of the model.

The limiting free energy F(z) is a convex function of log z. This follows by application
of the Cauchy–Schwartz inequality to the partition function

Zn(z1)Zn(z2) =
∑
m1

hn(m1)z
m1
1

∑
m2

hn(m2)z
m2
2

�
(∑

m

hn(m)[
√
z1z2]m

)2

= (Zn(
√
z1z2))

2.

(130)
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Figure 11. The generic phase diagram of a two parameter model of paths with generating function
C(t, z). The critical curve is given by tc(z), and it separates the diagram into a phase of ‘infinite
paths’ and a phase of ‘finite paths’. The nature of the singularity in C(t, z) changes along tc(z)
from a more complicated to a simpler singularity as the critical point (denoted by •) at z = zc is
passed. For example, an essential singularity may change into a branch point or a pole, or a branch
point may change into a pole. Critical points of this nature are tricritical points. The influence
of the tricritical point is felt in the phase of finite paths in the tricritical scaling region close to
the tricritical point. The tricritical point • separates the critical curve into τ -curve and a λ-curve:
the τ -curve is that part of tc(z) with the more complex singularity in C(t, z), while the λ-curve
corresponds to the part of tc(z) corresponding to simpler singularities (poles) in C(t, z).

Take logarithms of this, divide by n, to see that

1

n
logZn(z1) +

1

n
logZn(z2) � 2

n
logZn(

√
z1z2) (131)

and thus [logZn(z)]/n is a convex function of log z for each n > 0. Taking n → ∞ in the
last inequality shows that F(z) is the limit of a sequence of functions convex in log z:

F(z1) + F(z2) � 2F(√z1z2). (132)

It follows that if F(z) exists, then it is convex in log z. Moreover, whenever F(z) is
finite in (0,∞), then its right and left derivatives exists everywhere in (0,∞), and they
are non-decreasing functions of log z. Further, F(z) is also continuously differentiable almost
everywhere, and wherever the derivative exists, it is given by E(z) = limn→∞

[ dFn(z)
d log z

]
where

Fn(z) = [logZn(z)]/n; see equation (4).
The specific heat exponent α describes the nature of the critical point in F(z). The range

of values α > 1 seems to be ruled out by convexity in equation (132). If α = 1, then there
is a cusp in the specific heat, and a jump discontinuity in the energy density in equation (4).
Such transitions are first order. Values of α < 1 corresponds to continuous transitions; and in
particular, the energy density E(z) changes continues through the critical point.

3.1. Tricriticality

The generic phase diagram of the grand potential logC(t, z) in a two parameter model is given
in figure 11. This phase diagram is similar to those of the models in figures 2 and 8. A critical
curve (radius of convergence of C(t, z)) tc(z) separates two phases; one is a phase of ‘finite
paths’, where C(t, z) is finite, and its value is determined primarily by paths of finite length.
The second phase is one of ‘infinite paths’; in this regime, C(t, z) is itself divergent, as paths
of arbitrary length makes non-vanishing contributions.

The general tricritical phase diagram are found in models with two external fields, or
in the context here, with three parameters. The models considered here have in general two
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parameters with generating functions C(t, z); in such situations the tricritical phase diagram
collapses to the generic phase diagram in figure 11.

In the classical description of tricriticality, the critical curve tc(z) is assumed to be
differentiable in a neighbourhood of the tricritical point. The tricritical point separates the
critical curve tc(z) into a τ -curve and a λ-curve; the τ -curve corresponds to the more complex
singularities inC(t, z) (essential singularities or branch points), while the λ-curve corresponds
to simpler singularities in C(t, z). These meet in the tricritical point.

In the general tricritical phase diagram, the τ -curve is a curve of triple points, and this
is also the locus of common meeting points of three critical surfaces of (usually) first-order
transition separating three phases. The curve of triple points ends in the tricritical point, where
boundaries of the critical surfaces meet; the λ-curve is the boundary of one of these surfaces
[39].

The shape of the critical curve in the vicinity of the tricritical point is implicated in the
phenomonological description of tricriticality. Suppose that tτ (z) and tλ(z) are the τ and λ
parts of the critical curve tc(z). Expanding these about the tricritical point gives

tτ (z) = tc(zc)− aλ(z− zc)− bτ (zc − z)ψτ

tλ(z) = tc(zc)− aλ(z− zc)− bλ(z− zc)
ψλ .

(133)

The exponents ψτ and ψλ are shift-exponents, and they determine the shape of the critical
curves close to the tricritical point. In some models, the τ -curve is linear, in which case one
may assume that bτ = 0 and ψτ is not defined. Such models are said to be asymmetric.

There is a set of natural coordinates (s, g) that may be used to describe the shape of tτ (z)
and tλ(z) close to the tricritical point. Choose the s-axis tangent4 to the critical curve tc(z)
at z = zc, and the g-axis transverse to the critical curve at the tricritical point. Appropriate
definitions for the s and g coordinates might be made by considering equations (133). Choosing
s = z− zc, and g = tλ(zc)− t − aλs, reduce the expressions for the τ and λ-curves to

gτ (s) = bτ |s|ψτ gλ(s) = bλs
ψλ . (134)

If g = 0 = tλ(zc) − t − aλs, then the s-axis is described; it is tangent to the critical curve
tλ(z) at z = zc. If s = 0, then it follows that g = tλ(zc) − t , and the g-axis is transverse
to the critical curve tλ(z) at z = zc. Plotting the critical curve tc(z) in the (s, g)-plane gives
figure 12.

The generating functionG(t, z) is singular along the critical curve in figure 12. Along the
τ -curve, the singularity may be an essential singularity or a branch point singularity, and this
gives way to a simpler singularity, such as a pole, along the λ-curve. We may make a stronger
assumption than this: namely that G(t, z) is finite along the τ -curve and that the restriction
of G(t, z) to the τ -curve is an analytic function of z. This implies that the transition to the
infinite path phase is discontinuous along the τ -curve, consistent with the notion that this is a
first-order phase transition.

Along the λ-curveG(t, z) is assumed to have a continuous transition to the infinite phase.
This implies a continuous first derivative of G(t, z); that may be interpreted as evidence for
a simpler singularity (such as a pole or a branch point) in G(t, z) along the λ-curve. With
the g-axis as oriented in figure 12, the following scaling assumptions are made for G(t, z):
Assume that the singular parts of the generating functionG(t, z) scale as

G(t, z) ∼ Aτ(t − tτ (z))
2−α− along the τ -curve (135)

G(t, z) ∼ Aλ(t − tλ(z))
2−α+ along the λ-curve. (136)

4 In some models the derivative to the critical curve does not exist at the tricritical point. In those models the s-axis
should be chosen tangent to the λ curve at the tricritical point.
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Figure 12. The tricritical phase diagram in the (s, g)-plane. The tricritical region is shaded, and
the scaling assumptions of the generating function is indicated around the tricritical point, and
along the τ and λ curves.

The exponents α− and α+ describe the nature of the singularity in G(t, z) along the critical
curve. The inclusion of the factor 2 in the exponents is for historical reasons, and in some
sources the exponents are replaced by

γ− = α− − 2 and γ+ = α+ − 2. (137)

The assumptions above also ignored a ‘background’ analytic contribution to the generating
function. In models thatG(t, z) exhibit an essential singularity along the τ -curve, the exponent
α− does not exist.

The scaling of G(t, z) in the vicinity of the tricritical point in figure 12 is described by
the introduction of a tricritical exponent αt :

G(t, z) ∼ Atg
2−αt along the g-axis, as g → 0+. (138)

Along the τ -curve G(t, z) was assumed to be analytic, but this breaks down at the tricritical
point: the assumption is that

G(t, z) ∼ Au|s|2−αu along the τ -curve, as |s| → 0+. (139)

The behaviour ofG(t, z) as expressed in these assumptions must be reconciled at the tricritical
point. The assumption that

G(t, z) ≈ Atg
2−αt f (g−φs) (140)

where f (0) = 1 recovers equation (138). The exponents γt = 2 − αt and γu = 2 − γu are
often introduced instead. This assumption also implies that the shape of the λ-curve close to
the tricritical point is invariant under rescaling of the coordinates by g → Ag and s → Aφs.
Assuming that f (−x) ∼ xu as x → 0+, and comparing this to equation (139) shows that
u = 2 − αu, so that by equation (140) 2 − αt = φ(2 − αu) and this gives the relation

φ = 2 − αt

2 − αu
. (141)

In terms of the exponents γt and γu, this is the same as φ = γt/γu. The exponent φ is the
crossover exponent; it describes the crossover behaviour ofG(t, z) from the g to the s-axis as
the tricritical point is approached.
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Along the λ-curve the singular part inG(t, z) is given by equation (136)—this implies that
the argument of the tricritical scaling function f (x) in equation (140) cannot grow unbounded
along this part of the critical curve. In other words, g−φs ≈ constant along the λ-curve, and
this shows that gλ(s) ≈ bλs

1/φ . Comparison to equation (134) then shows that

ψλ = 1/φ. (142)

The shift-exponent is controlled by the shape or geometry of the λ-curve close to the critical
point, and this also determines the value of the crossover exponent.

A similar analysis can be performed along the τ -curve; and in some cases it is found that
ψτ = ψλ = 1/φ. These are the symmetric models. Also observe that equation (140) may be
written as

G(t, z) ≈ Ags
2−αuf0(gs

−1/φ) (143)

so that if derivatives to g are taken, then

∂nG(t, z)

∂gn
∼ A(n)g s

2−αu−n/φf (n)0 (gs−1/φ). (144)

These derivatives have exponents separated by 1/φ = �, and� is the gap-exponent. In some
models it is more efficient to estimate the gap exponent in order to obtain φ.

3.2. Finite size scaling

The convergence of the free energy Fn(z) = [logZn(z)]/n to the limiting free energy F(z) in
equation (3) introduces the notion of finite size scaling. The basic assumption is that the curves
Fn(z) are all rescaled images of the same curve about z = zc. Hence, assume that Fn(z), and
thus the partition function Zn(z), is a function of a single variable nφc(z− zc), where φc is the
finite size crossover exponent that controls the rescaling of the z-axis with n. In some respect
the development of finite size scaling is similar to that of scaling of the generating function.
The two scaling fields are s = z− zc and 1/n.

The partition function Zn(z) is generated by the generating function G(t, z) as in
equation (7). The scaling assumptions for G(t, z) in equations (136) and (140) suggest
that appropriate assumptions for the scaling of Zn(z) is

Zn(z) ≈



B+n

α+−3[tλ(z)]−n along the λ curve

Btn
αt−3[tλ(zc)]−n at the tricritical point

B−nα−−3[tτ (z)]−n along the τ -curve.

(145)

However,Zn(z) should be a function of the combined variable nφcs, and so one may introduce
a scaling function h(x) so that

Zn(z) ≈ h(nφcs)nαt−3[tτ (z)]−[nφc |s|]1/φc
. (146)

In this case, by equation (145) the scaling function h(x)must have asymptotic behaviour given
by

h(x) ∼
{
Bλx

(α+−αt )/φc as x → ∞
Bτ |x|(α−−αt )/φc as x → −∞.

(147)

In models that the path collapses to a compact shape, an entropic contribution to the free
energy should come from (local) fluctuations in the surface of the compact object. The size
of this contribution should be proportional to the total surface area which grows as n(d−1)/d

in d dimensions. Consequently, a factor of the form µn
σ

s should appear in the scaling form of
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Zn(z) along the τ -line in some models, where σ = (d − 1)/d . Such a surface term is known
to contribute in models such as percolation [50].

Simplify the above assumptions by puttingµλ = 1/tλ(z), µτ = 1/tτ (z), and by adsorbing
all factors, except nα∗−3 into the scaling function h(x). Then

Zn(z) ≈ h̄(nφcs)nαt−3 (148)

where

h̄(x) ≈



Bλx

(α+−αt )/φcµx
1/φc

λ as x → ∞
constant if x = 0

Bτ |x|(α−−αt )/φcµ|x|σ/φc
s µ|x|1/φc

τ as x → −∞.

(149)

The scaling of the limiting free energy can be determined from equation (148) by taking
logarithms and dividing by n. For large n the surface contribution is only important if µτ = 1,
and the result is that

Fn(z) ≈ 1

n
µ(nφcs) (150)

where

µ(x) ≈



x1/φc as x → ∞
|x|σ/φc if x → −∞ and µτ = 1

|x|1/φc if x → −∞ and µτ > 1.

(151)

Along the λ-curve, where s > 0 one may expect that

F(z) ∼ Cts
1/φc as s → 0+ (152)

and here the analytic contributions and other non-analyticities that are dominated by the
behaviour above are neglected. In equation (6) the scaling of the limiting free energy is given
in terms of the specific heat exponent α. Comparison to the above shows that

2 − α = 1

φc
. (153)

This is a hyperscaling relation that establishes a connection between the thermodynamic
scaling of the specific heat in equation (5) and the finite size scaling of the partition function.

Observe that tc(z) = e−F(z), and so gλ(s) ∼ tc(z) ∼ 1 − F(z) + · · · ∼ (z − zc)
2−α close

to the critical point along the λ-curve by equation (6). By equations (134) and (142) it follows
that

2 − α = ψλ = 1/φ = 1/φc. (154)

Hence φ = φc, and this connects the scaling of the generating function with the scaling of the
partition function. It follows that α = 1 implies that φ = 1, so that φ = 1 is consistent with a
first-order transition in the model.

3.3. Homogeneity of the generating function

Underlying homogeneity is an assumption of scale invariance. In a system undergoing a
continuous phase transition, it is assumed that there is only one length scale determined by
the correlation length—the system would be invariant under a spatial dilation followed by a
rescaling of the unit length to compensate for the dilation. Since the correlation length is
dependent on the fields g and s, changes in these may be considered equivalent to a dilation of
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space. The field g approaches zero as the tricitical point is approached, while the correlation
length ξ(g) diverges: Fix s = 0 and assume that

ξ(g) � g−νt (155)

where νt is the tricritical metric exponent describing the divergence of ξ(g) as the tricritical
point is approached.

Generally, rescaling of the fields g and s under a rescaling of space by a factor of σ may
be controlled by two exponents yg and yt by assuming that

g → σygg s → σyt s. (156)

In other words, changes in g are compensated by changes in σ through σ = g−1/yg , and
similarly for s. In the vicinity of the tricritical point, σ must scale with the correlation length
(since that sets the scale). In other words, comparison with equation (155) shows that one
should have

yg = 1/νt . (157)

Homogeneity is a mathematical assumption about the behaviour of the generating function
G(t, z) close to criticality. The singular part of the generating function G(t, z), in the
coordinates (g, s),Gs(g, s), is assumed to rescale under a dilation of space by a factor of
σ in d dimensions as

Gs(g, s) ≈ σ−dGs(σ
ygg, σ yt s). (158)

Assume that σ > 1 and that yg and yt are positive exponents. One may eliminate s in the
above by putting σ � g−1/yg to obtain

Gs(g, t) � gdνt Gs(c, g
−yt /yg s) (159)

where c is a constant, and where s is kept fixed. Since Gs(g, s) is the singular part of the
generating function, this may now be compared to equation (140) to note that

2 − αt = dνt φ = yt/yg. (160)

One may apply similar arguments to show that

2 − αu = d/yt . (161)

Since φ = yt/yg = ytνt , 1/νt can be interpreted as a fractal dimension; this also follows
from equation (154) where 2 − α = 1/(ytνt ). This relates the exponent yt to φ via the
fractal dimension 1/νt , and it explains the use of the term ‘hyperscaling relation’ to describe
equation (154); the dimensionality of the model enters (implicitly) via the exponent 1/νt .

It is possible to determine the scaling of generating function in a number of models
discussed in section 2. For example, the model of adsorbing Dyck paths has generating
function in equation (21). The critical point is at (t, z) = (1/2, 2) so that the scaling fields
s = 2 − z and g = 1 − 4t2 can be chosen. In this case it follows that

C(t, z) = 2z

2 − z(1 − √
1 − 4t2)

= 2z

s(1 + zs−1√g) = 2z
√
g(z + s

√
g−1)

. (162)

Comparison to equation (140) or to equation (143) shows that the scaling exponents can be
identified. In particular, 2−αt = −1/2 and 2−αu = −1 whileφ = 1/2, so that equation (141)
is confirmed for this model. The results obtained for more generating functions are given in
tables 1 and 2. In the case of inflating Dyck paths the description is incomplete: there is an
essential singularity at the critical point and the exponent 2 − αt seems to be undefined. The
crossover exponent φ = 1 in that model was determined by applying the method of dominant
balance [58].
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Table 1. Scaling of generating functions.

Equation GF s g Scaling forms

(11) g(t, z) 1 − 2z 1 − t 1
g2(1−tsg−1)

= 1
s2((gs−1)2−t (gs−1))

(21) C(t, z) 2 − z 1 − 4t2 2z√
g(z+s

√
g−1 )

= 2z
s(1+zs−1√

g )

(30) D(t, z) 1 − z 1 − 4t2 z√
g(z+s

√
g−1 )

= z

s(1+zs−1√
g )

(33) Ct(t, z) 2 − z 1 − 2t z(
√
g+

√
1+2t )

g(s
√
g−1+z

√
1+2t )

= z(
√
g+

√
1+2t )

s2(s−1√
g+z

√
1+2t(s−1√

g )2)

(35) Dt(t, z) 1 − z 1 − 4t2 z(1+2t)
g(s

√
g−1+z)

= z(1+2t)
s2(s−1√

g+z(s−1√
g )2)

(55) C(σ ; t, 2) 1 − σ 1 − 4t2
8t (1−t)(1+2t)−4(σ+tσ 2+t)(1−2t2+

√
g )√

g3(s2g−1−(1+s)2)

= 8t (1−t)(1+2t)−4(σ+tσ 2+t)(1−2t2+
√
g )

s3(s−1√
g−(s−1√

g )3(1+s2))

(119) C(t, q) 1 − 4t2 1 − q –

Table 2. Critical exponents.

Equation GF 2 − α− 2 − α+ 2 − αt 2 − αu φ

(11) g(t, z) −1 −1 −2 −2 1

(21) C(t, z) 1
2 −1 − 1

2 −1 1
2

(30) D(t, z) 1
2 −1 − 1

2 −1 1
2

(33) Ct(t, z) − 1
2 −1 −1 −2 1

2

(35) Dt (t, z) − 1
2 −1 −1 −2 1

2

(55) C(σ, t, 2) − 1
2 −1 − 3

2 −3 1
2

(119) C(t, q) ? −1 ? 1
2 1

3.4. Limiting free energies and microcanonical densities

The partition function Zn(z) = ∑
m�0 hn(m)z

m in a directed model includes objects (paths)
of fixed size, but arbitrary energy m. This is the canonical ensemble. The grand canonical
ensemble would include objects of arbitrary size; in our case this would be represented by the
generating functionG(t, z) =∑n�0,m�0 hn(m)z

mtn. Most of the results obtained in section 2
were obtained by studying the generating function, and therefore by taking a grand canonical
approach to the problem. In contrast, one may also work in the microcanonical ensemble: in
this case a model of objects of fixed size and fixed energy is studied.

Let hn(�εn�) be the number of paths of length n and with energy �εn�. Then ε is the
density of the energy as a fraction of n. It is not immediately clear what relation this has to
the canonical ensemble and to the limiting free energy, but the connection is established by
defining the (microcanonical) density function by

P(ε) = lim
n→∞ [hn(�εn�)]1/n (163)

if this limit exists (see reference [35] for details about this). Generally, existence of the limiting
free energy implies a weaker result.
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Theorem. Suppose that hn(m) satisfies the following assumptions:

• There exists a constantK > 0 such that 0 � hn(m) � Kn for each value of n and of m.
• There exists a finite constant C > 0, and non-negative integers An and Bn, such that

0 � An � Bn � Cn, and hn(m) > 0 if An � m � Bn.

In addition, suppose that the limiting free energy F(z) = limn→∞ 1
n

log
∑

m hn(m)z
m

exists and is finite in (0,∞), and that it is a convex function of log z. If F(z) �
max{εm log z, εM log z}, then the density function P(ε) exists in (εn, εM), and it is defined
by

logP(ε) = lim
n→∞

1

n
log [hn(�εn� + σn)] (164)

where 〈σn〉 is a sequence of integers such that σn = o(n). Moreover, P(ε) is finite and
concave in (εm, εM) and the integers δn = �εn� + σn may be chosen as the least values of m
that maximizes hn(m)zm.

Proof. Define δn to be the least value of m, and dependent on z, such that hn(m)zm is a
maximum. Then An � δn � Bn, and

hn(δn)z
δn �

Bn∑
m=An

hn(m)z
m = Zn(x) � (1 + Bn − An)hn(δn)z

δn . (165)

Take logarithms, divide by n and let n → ∞. This shows that

F(z) = lim
n→∞

1

n
log[hn(δn)zδn ]. (166)

Choose an ε and multiply equation (165) by z−�εn�. Taking logarithms, dividing by n and
taking n → ∞ then shows that

F(z)− ε log z = lim
n→∞

1

n
log[hn(δn)z

δn−�εn�]. (167)

But observe that F(z) � max{εm log z, εM log z} and that F(z) is convex in log z. Thus, if
ε ∈ (εm, εM), then the infimum over z on the left-hand side of equation (167) is realized at
a finite z = z1. In other words, the right-hand side of equation (165) is finite at z = z1,
and this is only possible if δn − �εn� = σn = o(n). This shows that the limit logP(ε) =
limn→∞ 1

n
log[hn(�εn� + σn)] exists, and completes the proof. �

In other words, existence of the free energy implies that the density function may be
defined by

logP(ε) = inf
z�0

{F(z)− ε log z}. (168)

On the other hand, it was observed above that F(z) = limn→∞ 1
n

log[hn(δn)zδn ], where
δn = �εn� + σn is that value of the energy m that maximizes hn(m)zm. Hence,

F(z) = sup
ε

{logP(ε) + ε log z} (169)

where ε ∈ (εm, εM). The density functions may be computed for the models discussed in
section 2. Those are listed in table 3.

The logarithm of the density function logP(ε) is concave and continuous in (εm, εM).
Jump discontinuities at εm and εM may indicate transition at zero or infinite z, while finite
right and left derivatives of P(ε) correspond to phase transitions in asymmetric models. For
example, it can be shown that the critical point in an asymmetric model with density function
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Table 3. Density functions.

Model Free energy Density function (εm, εM)

g0(t, z) (10) F(z) = log z 1
εε (1−ε)1−ε [0, 1]

g(t, z) (13) F(z) =
{

0 if z � 1/2

log 2 + log z if z > 1/2
2ε [0, 1]

C(t, z) (25) F(z) =
{

log 2 if z � 2

log z− 1
2 log(z− 1) if z > 2

2(1−ε)1−ε
2ε (1−2ε)1/2−ε (0, 1/2]

Ct(t, z) (34) F(z) =
{

log 2 if z � 2

log z− 1
2 log(z− 1) if z > 2

2(1−ε)1−ε
2ε (1−2ε)1/2−ε (0, 1/2]

Dt(t, z) (37) F(z) =
{

log 2 if z � 1

log(2z)− 1
2 log(2z− 1) if z > 1

2(1−ε)1−ε
(1−2ε)1/2−ε [0, 1/2]

C(s; t, 2) (55) F(z) =
{

log 2 if s � 1

log(s + 1)− 1
2 log(s) if s > 1

2
(1−2ε)1/2−ε(1+2ε)1/2+ε [0, 1/2]

Gco(t, 1, a; ξ) (83) F(1, a; ξ) =



log 2 if a � 1

log
√

2a√
(a−1)

√
2a−1

if a > 1

√
2(2−3ε+

√
ε2−2ε+2)

(1−4ε)1/4−ε
√

5−3ε+5
√
ε2−2ε+2

[0, 1/4]

C(t, q) (122) F(t) =
{

0 if t � 1/2

? if t > 1/2
? [0, 1]

with a finite right derivative at ε is located at

log zc = −
[

d+

dε
logP(ε)

]
ε=εm

. (170)

Discontinuities in the derivative of P(ε) otherwise also correspond to critical points. See [35]
for more details.

4. Collapse (and adsorption) in a model of colonnades

The adsorption transition discussed in section 2.2 is driven by an interaction between vertices
in the paths and a wall or an interface. This transition is due to a one-body interaction involving
one vertex in the path for every interaction. A two-body interaction can be introduced by an
activity conjugate to pairs of vertices that are close to one another in the lattice. This interaction
cannot be introduced in the (fully) directed lattice paths considered in section 2, but studied
in models of partially directed paths [9] and also in models of the self-avoiding walk [40].
In those models it drives a collapse transition [14]; the path goes from an extended object
(often considered for modelling a polymer in a good solvent), to a compact phase through a
θ -transition [16], as the strength of the activity is increased. The transition to compact objects
may be considered a model of polymers coming out of solution. θ conditions are encountered
at the critical point separating the good solvent regime and the poor solvent regime.

A two-body interaction is introduced by defining contacts as a pair of vertices in a partially
directed path that are also adjacent in the lattice. Any conformation of the path will have a
number of contacts; this will be its energy and the activity y will be conjugate to the number
of contacts. Directed square lattice paths do not admit any contacts, so that a partially directed
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(a) (b)

Figure 13. (a) A column of height 5 and length 11 steps. This column is a partially directed
path that steps 5 steps in the Y-direction, followed by 1 step in the X-direction, and then 5 steps
in the −Y -direction. (b) A set of interacting columns. Contacts between columns are two-body
interactions between vertices in adjacent columns, these are denoted by dashed lines. A column
of height 0 is a visit. The total area of a column is the shaded part, and its perimeter is the total
length of the partially directed path that forms its upper boundary. A set of adjacent and interacting
columns is a colonnade.

path model will instead be introduced to model collapse. A simplified model is discussed
next [36].

4.1. A model of collapsing colonnades

A column of height n is a path in the square lattice (XY -plane) with starting point in the
X-axis, n steps in the Y-direction, then one step in the X-direction followed by n steps in the
−Y -direction to terminate in the X-axis. The perimeter of the column consists of 2n+ 1 edges,
and it encloses an area of n unit squares. Two columns are adjacent if they are separated by
one step in the X-direction, and joined by an edges in the X-axis. A column and a collection
of adjacent columns are illustrated in figure 13.

A set of adjacent columns on the X-axis is a colonnade. An interacting colonnade may be
defined by introducing a two-body interaction between adjacent columns in the colonnade. A
contact between two colonnades is a pair of vertices in adjacent columns that are adjacent in
the lattice. A model of collapsing colonnades is defined by introducing activities conjugate to
contacts (y), and conjugate to the width (defined as the number of columns) of the colonnade
(η). The total perimeter length of the colonnade will be generated by t, and q will be the total
area of the colonnade included within its columns.

Observe that the total area α of a colonnade, and its width ω (number of columns), is
related to its total length � by � = 2α + 2ω− 1. Thus, specifying width and area also specifies
length. Hence, ignore the length generating variable t, and consider the generating function
G(q, y, η) of colonnades with area generating variable q, width generating variable η and
contact generating variable y. It is possible to solve for G(q, y, η) by finding a functional
recursion using the decomposition method, as in section 2.2.

A colonnade may be inflated by raising the height of each column by one. This
construction generates a factor of qy for each column other than the last column, and a
factor of q for the last column, since a new contact is generated on the right-hand side of each
column except the last, and the area of every column increases by one step. Thus, inflated
colonnades are generated by y−1G(q, y, qyη). The decomposition is illustrated in figure 14.

To simplify notation, let G(η) ≡ G(q, y, η). The decomposition in figure 14 shows that

G(η) = η + y−1G(qyη) + ηG(η) + y−1ηG(qyη) + y−1ηG(qyη)G(η)

= η + η(η + q) + η(η + q)2 + · · ·
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Figure 14. A functional recursion for the generating function G(q, y, η) may be obtained using
the above decomposition. A colonnade is composed either of a single column of height 0, or it is an
inflated colonnade, or it is a colonnade with first column of height 0, or it is an inflated colonnade
followed by a column of height 0, or finally it is an inflated colonnade, followed by a column of
height 0, and then followed by an arbitrary colonnade.

This is a non-linear functional recursion, and it may be written as

G(qyη)G(η) +
1 + η

η
G(qyη) +

y(η − 1)

η
G(η) + y = 0. (171)

An explicit expression can be obtained if qy = 1 by solving forG(η)|qy=1 from equation (171):
this gives

G(η)|qy=1 = 1 − η − q − qη −
√
(1 − q)((1 − η)2 − q(1 + η)2)

2qη
. (172)

There are branch points singularities in G(q, y, η)|qy=1 whenever q = 1, or q = (1 −
η)2/(1 + η)2 < 1. Thus, along the hyperbola qy = 1, the radius of convergence is given by
qc(η) = min{1, (1 − η)2/(1 + η)2} = (1 − η)2/(1 + η)2 for η ∈ [0, 1].

The full generating function can also be determined by solving the functional recursion
in equation (171). Linearize this equation by the ansatz

G(η) = B

η

H(qyη)

H(η)
− η + 1

η
. (173)

Substition followed by simplification gives

B2H(q2y2η) + (y(η − 1)− (η + 1))BH(qyη) + yH(η) = 0. (174)

This may be simplified to the linear second-order recursion with constant coefficients:

α2H(q
2y2η) + α1H(qyη) + α0H(η) + ηH(qyη) = 0. (175)

where the αi are given by

α2 = B

y − 1
α1 = − y + 1

y − 1
α0 = y

B(y − 1)
. (176)

The functional recursion as in equation (175) has solution given by

H(η) =
∞∑
n=0

(−η)n(qy)( n2 )∏n
m=0 �((qy)

m)
where �(t) = α0 + α1t + α2t

2 (177)

provided that α0 +α1 +α2 = 0; this may be checked by direct substitution. B should be chosen
so that

∑
i αi = 0; this occurs when

B = 1 or B = y. (178)

The correct choice for B would give the correct solution for G(η), and may be obtained by
expandingG(η) for small η. It follows that

�(t) = y

B(y − 1)
(1 − t)

(
1 − B2

y
t

)
. (179)
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Therefore
n∏

m=1

�((qy)m) =
(

y

B(y − 1)

)n
(qy; qy)n(B2q, qy)n. (180)

A q-deformed Bessel function is defined by

J (q;p, t) =
∞∑
n=0

(−t)nq( n2 )
(q; q)n(p; q)n . (181)

Comparison with H(η) shows that

H(η) = J

(
qy;B2q,

η(y − 1)B

y

)
(182)

H(qyη) = J (qy;B2q, qη(y − 1)B). (183)

The solution for the generating function is then given by

G(q, y, η) = B

η

J (qy;B2q, qη(y − 1)B)

J
(
qy;B2q,

η(y−1)B
y

) − η + 1

η
. (184)

Since J (p, q, t) = 1 + · · · , the term in 1/η is cancelled only if B = 1, so that this choice for
B fixes the generating function. Thus, one finally obtains

1 +G(q, y, η) = 1

η


J (qy; q, qη(y − 1))

J
(
qy; q, η(y−1)

y

) − 1


 . (185)

The generating function G1(q, y, η) of an inflated colonnade (with no visits) can be directly
be determined from equation (185). It was observed that G(η) = yG1(η/qy), where
G(η) ≡ G(q, y, η), since reducing the height of each inflated colonnade counted by G1(η)

by 1 gives a unique colonnade. Hence,G1(η) = y−1G(qyη), so that

1 + yG1(q, y, η) = 1

qyη

(
J (qy; q, q2ηy(y − 1))

J (qy; q, qη(y − 1)
− 1

)
. (186)

G1(q, y, η) ≡ G1(η) also satisfies the following functional recursion:

yG1(η) = G1(qyη) + (1 + yG1(η))qyη(1 +G1(qyη)) (187)

This recursion was obtained in the study of directed vesicle models, and, in particular, in an
area–perimeter model of bargraphs or histogram polyominoes [2, 3]. Let qy → q and then
η → q/y and y → 1/t to obtain the same functional recursion as in equation (3.11) in the
paper by Prellberg and Brak [53].

4.2. The phase diagram of collapsing colonnades

There is a line of essential singularities in G(q, y, η) along the hyperbola qy = 1. The
restriction ofG(q, y, η) to the curve qy = 1 is analytic along a part of qy = 1. If y = 1, then
the generating function can be determined fromG1(q, 1, η). In this case

G1(q, 1, η) =
∞∑
n=1

n∑
k=1

An(k)η
kqn (188)

where An(k) is the number of colonnades with k columns, each of height at least 1, and of
total area n. Now,

An(k) =
(
n− 1
k − 1

)
(189)
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and direct calculation gives

G1(q, 1, η) = qη

1 − q(1 + η)
= qη + q2η + q2η2 + q3η + · · · . (190)

An inflated colonnade can be deflated by taking η → η/qy; this shows that

G(q, 1, η) = G1(η/q) = η

1 − (q + η)
if y = 1. (191)

There is a simple pole in G(q, 1, η) at q = 1 − η < 1, and if 1 > η > 0 then the radius of
convergence of G(q, y, η) is not determined by the curve qy = 1, but by a curve of simple
poles qc(y) lying below the curve qy = 1 in the qy-plane.

Singularities of G(q, y, η) below qy = 1 should be due to the roots of H(η) in
equation (173).5 H(η) decreases from 1 to −∞ as q increases from 0 to min(1, y−1). Since
H(η) is continuous, there is a qc(y) where H(η) = 0 (by the intermediate value theorem).
Moreover, ∂H(η)

∂q
< 0, so this pole is simple. This proves the presence of a simple pole in

G(q, y, η) at qc(y) for each y � 1. Assume that these simple poles all lie on the curve qc(y).
This curve is also non-increasing with y and it should meet qy = 1 in the tricritical point
(qc, yc). The obvious candidate for this point is a critical point along qy = 1. This may be
guessed by looking at equation (172). Since the point (q, y) = (1, 1) is ruled out by the above,
it appears that the tricritical point is at

(qc(yc), yc) = ((1 − η)2/(1 + η)2, (1 + η)2/(1 − η)2). (192)

Further investigation can be done by considering the analyticity ofG(q, y, η) in the region
given by qy < 1 and y � yc. If G(q, y, η) is analytic in this region, then this proves that the
critical curve is given by qc = 1/y for y � yc. Since qc(y) < 1/y for at least y = 1, this shows
that there is a non-analyticity in qc(y) and therefore in F(y); this corresponds presumably to
the collapse transition. Proceed by dividing equation (175) by H(qyη) to obtain

α2
H(q2y2η)

H(qyη)
+ (α1 + η) + α0

H(η)

H(qyη)
= 0. (193)

Put g(η) = H(qyη)/H(η), then it follows from equation (173) that

G(q, y, η) = 1

η
(g(η)− 1)− 1. (194)

To see that the curve qy = 1 is a locus of essential singularities inG(q, y, η), argue as follows.
Both H(η) and H(qyη) have qy = 1 as an accumulation point of poles. If these poles do not
cancel in g(η), then they would create an essential singularity at qy = 1. Otherwise, assume
that they do cancel. Singularities in g(η) are then due to zeroes ofH(η). This denominator has
roots between pairs of adjacent poles given by solutions of (q; qy)n = 0 and (qy; qy)n = 0
for n = 1, 2, 3, . . .. Since H(η) �= H(qyη) if y � yc and qy < 1, these roots should form
singularities in g(η) that accumulate on the curve qy = 1. Lastly, to see that G(q, y, η) is
analytic in the region qy � 1 and y > yc, substitute g(η) in equation (193) to obtain

g(η) = −α0

α1 + η + α2g(qyη)
. (195)

Replace αi in this expression by the definitions in equation (176) (with B = 1), and define
εp = 1 + y + (qy)pη(1 − y) to simplify it to

g(η) = y

ε0
(
1 − g(qyη)

ε0

) . (196)

5 H(η) is absolutely convergent if q < 1 and qy < 1. Thus, if both q < 1 and qy < 1, then H(η) is an analytic
function, and G(η) is a meromorphic function in the domain q < 1 and qy < 1 (it is the ratio of two holomorphic
functions). Here, its singularities are given by the zeros of H(η).
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This can be developed into an infinite fraction:

g(η) = y

ε0


1 − y

ε0ε1

(
1− y

ε1ε2

(
1− y

ε2ε3(1−···)
) )



(197)

with the result that an infinite fraction representation for G(q, y, η) is obtained. Applying
Worpitsky’s theorem [63] shows that this is convergent whenever∣∣∣∣ yq

εpεp+1

∣∣∣∣ � 1

4
for all p � 0. (198)

Substitution of εp gives explicitly∣∣∣∣ yq

(1 + y + (qy)pη(1 − y))(1 + y + (qy)p+1η(1 − y))

∣∣∣∣ � 1

4
. (199)

If y > 1 and qy � 1 then this implies that G(q, y, η) is convergent for all values of y that
satisfies

(1 + y + η(1 + y))2 � 4y. (200)

Solving for y, and since y > 1, gives

y �
(

1 + η

1 − η

)2

= yc. (201)

as observed in equation (192). In other words, this proves that the critical point has to occur
as some value of y less or equal to ((1 + η)/(1 − η))2. The coincidence of this point with a
critical point on the curve qy = 1 in equation (172) proves that the critical point is located
here. Since the restriction of G(q, y, η) to qy = 1 is analytic along qy = 1 for all y > yc, it
follows that qc(y) = 1/y for all y � yc.

4.3. Scaling of collapsing colonnades

In the last two sections evidence were presented that the critical curve qc(y) of collapsing
colonnades are composed of a curve of essential singularities along qy = 1 for y > yc, and
a curve of simpler singularities (poles) along qc(y) < 1/y if y < yc. The critical point at
(qc, yc) is a tricritical point, and if the free energy of this model is defined by F = − log qc(y),
then it is apparent that

F(y) =
{
> log y if y < yc

= log y if y � yc.
(202)

The scaling of the generating function can be determined by using known results for the
asymptotics of q-deformed Bessel functions [52]. This will also show that collapsing
colonnades are closely related to models of inflating vesicles; one such relationship was
already pointed out by noting that inflated colonnades and bargraph polyominoes have the
same functional recursion in equation (187). Here, the scaling of G(q, y, η) will be seen to
be similar to that of area–perimeter generating function of staircase polygons [53].

Suppose that q generates area, t vertical edges, and η horizontal edges (or width) in a
model of staircase polygons. Then the generating function is given by [7, 53]

Gs(q, t, η) = η

(
J (qη, q, q2t)

J (qη, q, qt)
− 1

)
. (203)
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This can be transformed into equationG(q, y, η) in equation (185) by taking η → y followed
by t → η(y − 1)/(qy). This generating function is known to have the following uniform
asymptotic behaviour [52]: For 0 < η, t < 1, 0 < q < 1 define

z = (1 + η − t)/2 d = z2 − η. (204)

Define α by

4
3α

3/2 = log(z +
√
d) log(1 − z +

√
d)− log(z −

√
d) log(1 − z−

√
d) + Li2(z−

√
d)

+Li2(1 − z−
√
d) + Li2(z +

√
d) + Li2(1 − z +

√
d). (205)

Then it follows that

Gs(q, t, η) = 1

2

(
1 − t − η + α−1/2(−log q)1/3

Ai ′(α(−log q)−2/3)

Ai(α(−log q)−2/3)

√
(1 − t − η)2 − 4tη

)
× (1 +O(− log q)). (206)

Ai(x) is the Airy function. Comparison with equations (140) and (141) shows that
φ = 2/3, 2 − α = 1/3 and 2 − αu = 1/2.

In the special case that t = η (that is, horizontal edges and vertical edges in the staircase
polygons are the same) it follows from the square root factor in equation (206) that the critical
point is at (qc, tc) = (1, 1/4). The asymptotic behaviour in the vicinity of this point is given
by

Gs(q, t, t) ∼ 1

2
− t + 4−2/3(− log q)1/3

[
Ai ′(44/3(1/4 − t)(− log q)−2/3

Ai(44/3(1/4 − t)(− log q)−2/3

]
. (207)

One may identify the scaling fields (1/4 − t) and − log q = − log(1 + q − 1) ≈ (1 − q), and
in this case comparison with equations (140) and (141) shows again that this model has the
exponents listed in the last paragraph. In fact, these exponents are encountered in a variety
of vesicle models [53], and they are known as ‘vesicle exponents’. The line q = 1 is again a
line of essential singularities in this model, and this intersects a curve of branch points at the
tricritical point.

These results are directly applicable to the colonnades generating function G(q, y, η) in
equation (185). The ratio of q-deformed Bessel functions in equation (185) can be turned into
those in equation (203) by first replacing q by qη, then putting y = 1/η, and finally eliminating
y by t through qt = η(y − 1)/y = η2(y − 1). In other words, the full scaling ofG(q, y, η) is
given by equation (206) with the appropriate changes. This model has vesicle exponents, and a
scaling function that is a ratio of the derivative of an Airy function and an Airy function. Since
α is not an important contributor to the scaling behaviour, only q and the square root factor
in equation (206) have to be determined to find the scaling fields. Appropriate substitutions
shows that up to analytic corrections,

G(q, y, η) ∼ (−log(q/η))−1/3
√
(1 − 1/y)2(1 − η)2 − 4η(1 − 1/y)/yF(α(− log(qη))−2/3)

(208)

where F(·) = Ai ′(·)/Ai(·) is the scaling function.

5. Conclusion

In this review the methods and general theory of directed lattice path models of linear polymers
were presented. In particular, I presented Dyck path models in a variety of ensembles. The
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Figure 15. Directed models of walks and polygons. (a) Partially directed paths are more general
models of collapsing and adsorbing polygons (contacts between nearest neighbour vertices are
denoted by dashed lines). Dyck paths have also been generalized to Motzkin paths (in the triangular
lattice). (b) Histogram polygons are related to partially directed paths (the upper boundary of the
polygon is a partially directed path with endpoints in the X-axis. (c) Partition polygons, (d) stack
polygons, (e) staircase polygons and ( f ) convex polygons are directed models of vesicles.

generating functions were obtained, with particular emphasis on the most common methods for
deriving them. In particular, decomposition methods, the Temperley method, and a constant
term formulation were presented. In each case a different model was studied.

The generating functions are expected to be subject to tricritical scaling, and the general
theory of tricritical scaling, in the context of the models here, were reviewed in section 3.
In section 4 a model of colonnades was investigated. This model is very closely related to
models of vesicles, including staircase polygons, histogram polygons, and other models of
convex or directed vesicles encountered in the literature. In particular, the generating function
of colonnades may be expressed as the ratio of two q-deformed Bessel functions, and the
generating functions of staircase polygons and histogram polygons are similarly ratios of
q-deformed Bessel functions [53, 12]. The asymptotics of q-deformed Bessel functions was
worked out by Prellberg [52], with the result that such asymptotics are also known for the
model of colonnades. In many of the Dyck path models in section 2 the tricritical scaling
assumptions can be tested in the generating function, and these are tabled in table 3.

In figure 15 I present some related models of directed paths and vesicles. Motzkin path
[18] and partially directed path models (figure 15(a) [50, 64, 38]) of adsorbing polymers have
also received attention in the literature. The adsorbing Motzkin path generating function is
given by

M(t, z) = z

1 − tz(1 − tM(t, 1))
(209)

from which one may first solve for M(t, 1) and then for M(t, z). The upper boundary of
the polygon in figure 15(b) is a partially directed path constrained to visit vertices only on or
above the X-axis, and have endpoints in the X-axis. These are bargraph paths, and they can
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be turned into models of adsorbing bargraph paths by weighing visits by vertices in X-axis by
z. In that case the generating function is

B(t, z) = tz2(1 + t (1 + tz)B(t, 1))

1 − tz(1 + t2zB(t, 1)
. (210)

It is similarly possible to define models with weighted edges in the X-axis [38]. In
these bargraph path models, exchange relations analogous to equation (22) have also been
determined, and the adsorption of coloured models of Motzkin and partially directed paths
have been studied [38]. The adsorption of periodic models of coloured partially directed paths
was considered in [45] as well.

The collapse transition of a partially directed walk, with contacts (dotted lines in
figure 15(a)) weighted by y, was also considered in [9]. The generating function of this
model contains a ratio of q-deformed Bessel functions,

Gs(t, y) = 2t − t2(2 + t − ty)H(t, y)

t2(1 + t + y − ty)H(t, y)− 2t
(211)

where

H(t, y) = J (ty, t, t2(y − 1))

J (ty, t, t3y(y − 1))
. (212)

Critical exponents in the tricritical framework is known for this model [9], and the scaling
forms are related to that of collonades. A model of bargraph polygons in the perimeter–
area ensemble is equivalent to the collonades in section 4.1, see equations (186) and (187)
[2, 3, 53, 5].

The remaining directed vesicle models in figure 15 are somewhat simpler. Partition
polygons in figure 15(c) are counted by q-exponentials (equation (118)) in a height–area
ensemble, and in the area–perimeter ensemble by

P(t, q) =
∞∑
n=0

t2n+2qn

(t2q; q)n (213)

where q is the area generating variable. Stack polygons (figure 15(d)) [66] are closely related
to partition polygons, and have generating function

S(t, q) =
∞∑
n=0

t2n+2qn(1 − t2qn)

(t2q; q)2n
. (214)

Models of spiral walks in the square lattice are also closely related to partition and stack
polygons [43, 28]. Staircase polygons (figure 15(e)) have been famously counted in the
area–perimeter ensemble by Polyà [51] using Gaussian binomial coefficients. This generating
function can also be derived by a functional recursion and is a ratio of q-deformed Bessel
functions:

Gs(t, q) = t2
[
J (q, t2q, t2q2)

J (q, t2q, t2q)
− 1

]
(215)

and this is also related to collonades, when the above is compared with equation (185). Other
convex polygon models, such as fully convex polygons (figure 15( f )) or partially convex
polygons, have also received attention in the literature, see for example [17, 7, 12, 53, 20].
Directed animal models of adsorbing and collapsing branch polymers have also been
considered [37].

There is much scope for further work in this field. More general models can be studied,and
the critical behaviour in models with three or more parameters have not been described. For
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example, scaling close to the triple point in figure 6 should be investigated. The description of
inflating Dyck paths with an adsorbing activity in section 2.7.1 also deserves more attention,
as do coloured Dyck paths and partially directed path models of adsorbing and collapsing
copolymers.
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Appendix. Free energy and self-averaging in quenched models of coloured Dyck paths

A.1. The growth constant of adsorbing Dyck paths

The number of Dyck paths of length 2n is given by Catalan’s number Cn. It may be checked
that CnCm � Cn+m, and an easy proof of this inequality follows from a simple construction
(called concatenation) on Dyck paths: Translate a Dyck path of length 2m so that its initial
vertex coincides with the final vertex of a Dyck path of length 2n. This produces a Dyck path
of length 2(n + m), and note also that each pair of Dyck paths of lengths 2n and 2m gives a
unique path of length 2(n +m) when concatenated in this way. Since there are Cn choices for
the path of length 2n, and Cm choices for the path of length 2m, the inequality follows.

In addition to the submultiplicative inequality CnCm � Cn+m, it is the case that Cn � 4n.
This is seen by noting that two steps can be added in four ways to the endpoint of a directed
path. Together, the submultiplicative inequality and the upper bound implies the existence of
the limit [29–31, 65].

µD = lim
n→∞C

1/2n
n (216)

and since the radius of convergence of C(t) in equation (19) is tc = 1/4, it follows that
µD = 2. The number µD is the growth constant of Dyck paths, and it is the asymptotic
number of ways a step can be added while a Dyck path is generated. The numerical value of
µD shows that Dyck paths wander away from the main diagonal in the asymptotic limit, and
return with probability zero to intersect a vertex in it.

The concatenation above may be instead applied to Dyck paths with visits. In particular,
if c2n(v) is the number of Dyck paths with v visits and half-length n, then∑

w

c2n(w)c2m(v −w) � c2(n+m)(v). (217)

Multiplying by zv and summing over v then shows that the partition function satisfies a
submultiplicative inequality:

Z2n(z)Z2m(z) � Z2(n+m)(z). (218)

Since Z2n(z) � Cnz
n, the result is the existence of a growth constant µD(z) given by

µD(z) = lim
n→∞[Z2n(z)]1/2n = e−F(z) (219)

where F(z) is the limiting free energy density of adsorbing Dyck paths per edge (unit length),
given by equation (25). Thus,

µD(z) =
{

2 if z � 2
z√
z−1

if z > 2.
(220)

and one notices that µD(z) = 1/tc(z) in equation (24).



Topical Review R57

A.2. A most popular argument

Consider now instead the number cn(v, [h1h2]) of directed paths, above the main diagonal in
the square lattice, with v visits to the main diagonal, of length n, and with initial vertex a height
h1, and final vertex a height h2, above the main diagonal. It is possible to concatenate paths
counted by cn(w, [hh]) with paths counted by cm(v−w, [hh]) to obtain the submultiplicative
inequality6 ∑

w

cn(w, [hh])cm(v −w, [hh]) � cn+m(v, [hh]). (221)

As above, one may multiply this by zv , define the partition functionZn(z, [hh]), and sum over
v to obtain

Zn(z, [hh])Zm(z, [hh]) � Zn+m(z, [hh]). (222)

Clearly, the partition function of Dyck paths is given by Zn(z) = Zn(z, [00]), since the
endpoints are fixed in the main diagonal in that case.

For any given fixed z, there are most popular values of [hh], denoted by [h∗h∗], and with
h∗ possibly dependent on n, so that

Zn(z, [hh]) � Zn(z, [h∗h∗]). (223)

It follows that

Zn(z) = Zn(z, [00]) � Zn(z, [h∗h∗]) (224)

and by sandwiching p paths generated by Zn(z, [h∗h∗]) between paths from Zn(z, [0h∗]) and
Zn(z, [h∗0]), one finds that

Zn(z, [0h∗])[Zn(z, [h∗h∗])]pZn(z, [h∗0]) � Zn(p+2)(z, [00]) = Zn(p+2)(z). (225)

Take logarithms of this, divide by n(p+2) and let p → ∞. This shows that by equations (224)
and (219),

1

n
logZn(z) � 1

n
logZn(z, [h∗h∗]) � F(z). (226)

In other words, if one takes n → ∞ above, then

F(z) = lim
n→∞

1

n
logZn(z, [h∗h∗]). (227)

Lastly, the most popular choice [h∗h∗] may still not maximizeZn(z, [hh]); the maximum over
[hh] for fixed n and z may occur at conformations with heights [h∗

1h
∗
2], where h∗

1 may not be
equal to h∗

2. In that case, the constructions for equations (221) and (222) give

(Zn(z, [h∗h∗]))2 � Zn(z, [h∗
1h

∗
s ])Zn(z, [h∗

2h
∗
1])

= (Zn(z, [h∗
1h

∗
2]))2 � Z2n(z, [h∗

1h
∗
1]) � Z2n(z, [h∗h∗]) (228)

where [h∗
1h

∗
2] are the most popular values of [h1h2] in Zn(z, [h1h2]). Taking logarithms,

dividing by 2n and taking n → ∞ shows that

F(z) = lim
n→∞

1

n
logZn(z, [h∗

1h
∗
2]). (229)

6 The parity of [h1h2] present a slight problem here. If both h1 and h2 are odd, or both are even, then n should only
be even in cn(w, [h1h2]), and otherwise n should be odd. Without further reference to this problem, the parity of
[h1h2] will be taken to fix the length of the paths as odd or even in the expressions that follow.
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A.3. Self-averaging in adsorbing coloured Dyck paths

Arguments analogous to those above may be used to prove that this model is self-averaging.
Let Zn(z, [h1h2]|χ) be the partition function of a model of adsorbing Dyck paths, odd
labeled vertices coloured by χ = (χ1, χ2, . . .) where χi is takes values in the set of colours
{A,B,C, . . .}, and with endpoints at heights [h1h2] above the main diagonal. Assume that
visits of colourA (these areA-visits) are weighted by a, and that other visits are not weighted.
While this model may seem very simplified, the results below can be (without too much
difficulty) applied to more general models.

Fix 2n = Nm + r, 0 � r < m, and let χ0 be a sequence of colours. Consider a path P
counted by the partition function Z2n(a|χ0) = Z2n(z, [00]|χ0) of Dyck paths coloured by χ0

and of half-length n. P may be cut into N pieces of lengthm− 2 (where m is even) by deleting
N vertices in P (the mth, 2mth, etc.) and a remainder of length r − 1. This is cut the sequence
χ0 into {χ(1), χ(2), χ(3), . . . , χ(N), χ(N+1)}, each subsequence of length m/2. The endpoints
of each piece of the divided P have a certain height above the main diagonal, suppose that the
�th piece have endpoints of heights [h�, k�]. Observe that k�−1 = h� for � = 2, 3, . . . , N = 1.
By selecting most popular values of [h�k�], this shows that

Z2n(a, [00]|χ0) �
N∏
�=1

[Zm−2(a, [h∗
�, k

∗
� ]|χ(�))]Zr−1(a, [hN+1kN+1]|χ(N+1)). (230)

Take logarithms, divide by n, and take the lim sup of the left-hand side as n → ∞, but with m
fixed. Then N → ∞, and r varies between 0 and m− 1. The result is that

lim sup
n→∞

1

2n
logZ2n(a, [00]|χ0) � lim

N→∞
1

N

N∑
�=1

1

m
logZm−2

(
a, [h∗

�k
∗
� ]|χ(�)) . (231)

The strong law of large numbers shows that the right-hand side approaches the average over
all colourings for almost every sequence χ0. Thus

lim sup
n→∞

1

2n
logZ2n(a, [00]|χ0) �

〈
1

m
logZm−2(z, [h∗

χk
∗
χ ]|χ)

〉
χ

for almost every χ.

(232)

The heights [h∗
χk

∗
χ ] are the most popular heights for every colouring χ . This inequality is the

first half of a proof that this model is self-averaging.
On the other hand, consider concatenating paths by translating one path so that its last

vertex is two steps from the first vertex of the second path. By adding two edges in the obvious
way, the paths are joined into one. If these paths are selected from the partition functions
Zm−2(a, [00]|χ(�)) for � = 1, 2, . . . . Then, if χ0 = χ(1)χ(2)χ(3) . . . , this shows that[

N∏
�=1

Zm−2(z, [00]|χ(�)
]
Zr−1(a, [00]|χ(N+1)) � Z2n(a, [00]|χ0). (233)

Take logarithms, divide by 2n, and take the lim inf on the right-hand side while m is fixed.
Then N → ∞, while r is bounded. Again applying the strong law of large numbers,〈

1

m
logZm−2(a, [00]|χ)

〉
χ

� lim inf
n→∞

1

2n
logZ2n(a, [00]|χ0). (234)

Our proof would be complete if we can show

lim sup
m→∞

1

m
〈logZm−2(a, [h∗

χk
∗
χ ]|χ)〉χ � lim inf

m→∞
1

m
〈logZm−2(a, [00]|χ)〉χ . (235)
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With equation (232) and (234), this would imply that the limit

Fqu(a|χ0) = lim
n→∞

1

2n
logZ2n(a, [00]|χ0) exists for almost all χ0. (236)

and moreover that

Fqu(a|χ0) = lim
n→∞

1

2n
〈logZ2n(a, [00]|χ)〉χ for almost all χ0. (237)

In other words, the limiting free energy of a quenched sequence is almost always (with
probability 1) equal to the averaged quenched limiting free energy (one may interchange the
order of the average and the limit). This property is called self-averaging.

It only remains to prove equation (235):

Claim.

lim sup
m→∞

1

m
〈logZm−2(a, [h∗

χk
∗
χ ]|χ)〉χ � lim inf

m→∞
1

m
〈logZm−2(a, [00]|χ)〉χ . (238)

Proof. Put m − 2 = Mp + r and concatenate paths of length p − 2 and coloured by χ(�) as
before to obtain

Zp−2
(
a, [0k1]|χ(1))

[
M−1∏
�=2

Zp−2(a, [h�k�]|χ(�))
]

×Zp−2(a, [hN0]|χ(M))Zr−1(a, [00]|χ(M+1)) � ZMp+r (a, [00]|χ). (239)

Here, χ = χ(1)χ(2)χ(3) . . . χ(N+1), and h� = k�−1 for � = 2, 3, . . . ,M . Observe that the above
also stays true if one replaces [h�k�] by their most popular values for each sequence {χ(�)}.
Taking logarithms, and averaging over χ shows then that (after division by 2n = Mp + r , and
after taking the lim inf of the right hand side as n → ∞ with p fixed)

lim
M→∞

1

Mp + r

M−1∑
�=2

〈logZp−2(a, [h∗
χk

∗
χ ]|χ)〉χ � lim inf

n→∞
1

2n
〈logZ2n(a, [00]|χ)〉χ. (240)

Finally, take the lim sup and p → ∞ on the left-hand side, this completes the proof. �
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